Master
2024/2025



Machine Learning (Advanced level)
Type:
Elective course (Economics and Economic Policy)
Area of studies:
Economics
Delivered by:
Department of Theoretical Economics
Where:
Faculty of Economic Sciences
When:
1 year, 4 module
Mode of studies:
offline
Open to:
students of all HSE University campuses
Instructors:
Pasha Andreyanov
Master’s programme:
Economics and Economic policy
Language:
English
ECTS credits:
3
Course Syllabus
Abstract
The course describes main recent machine learning and data analysis methods as well as their application in economic research. Special attention in the course is paid to the implementation of these algorithms and models in Python
Learning Objectives
- Знание и понимание таких тем машинного обучения как: баесовские методы, глубокое обучение и обучение с подкреплением.
Expected Learning Outcomes
- Знать основные идеи обучения с подкреплением: policy update, value update...
- Уметь написать коды value iteration, policy iteration, q-iteration...
- Знать и понимать генеративные модели текстового анализа
- Знать и понимать дискриминативные модели текстового анализа
- Уметь запустить простейшую нейронную сеть.
Interim Assessment
- 2024/2025 4th module0.25 * Presence and participation in class + 0.25 * written exam + 0.5 * written homeworks
Bibliography
Recommended Core Bibliography
- A first course in machine learning, Rogers, S., 2012
- Data mining : practical machine learning tools and techniques, Witten, I. H., 2011
- Foundations of machine learning, Mohri, M., 2012
- Machine learning, Mitchell, T. M., 1997
Recommended Additional Bibliography
- Introduction to natural language processing, Eisenstein, J., 2019
- The handbook of computational linguistics and natural language processing, , 2013