• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2024/2025

Предиктивное моделирование

Статус: Маго-лего
Когда читается: 3, 4 модуль
Охват аудитории: для своего кампуса
Язык: русский

Программа дисциплины

Аннотация

Дисциплина "Предиктивное моделирование данных" предполагает получение студентами теоретических знаний в области анализа данных, выявления структуры анализируемой выборки, нахождения взаимосвязей между показателями, измеренными в разных шкалах, построения регрессионных моделей, проведения факторного и кластерного анализа, прогнозирования с использованием деревьев решений, а также получение практических навыков применения статистических методов при решении задач с использованием профессиональных систем статистического анализа данных.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью освоения дисциплины является формирование у студентов комплекса теоретических знаний и методологических основ в области предиктивного моделирования данных, а также практических навыков, необходимых для использования системы IBM SPSS Statistics, обеспечивающих решение широкого круга задач с использованием статистических методов.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать методы дерева решений и методы проверки адекватности модели.
  • Знать особенности измерения связей для переменных, измеренных в номинальной, порядковой и интервальной шкалах.
  • Знать понятия выборки, генеральной совокупности, вероятности, статистической значимости. Понимать назначения шкал измерения переменных, уметь модифицировать данные и осуществлять их отбор.
  • Знать сущность методов кластеризации, принципы факторного анализа и метод главных компонент. Уметь решать задачи с использованием этих методов.
  • Понимать сущность процедуры расчета частотных таблиц, знать структуру и содержание элементов таблиц сопряженности, статистических характеристик распределения значений переменных, измеренных в интервальной шкале.
  • Уметь строить модели бинарной и порядковой логистической регрессии. Знать методы оценки качества моделей.
  • Уметь строить модели парной и множественной линейной регрессии. Знать методы оценки качества моделей.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Особенности подготовки данных для статистического анализа.
  • Описательная статистика для переменных, измеренных в номинальной, порядковой и интервальной шкалах.
  • Поиск связей между номинальными, порядковыми и количественными переменными.
  • Введение в регрессионный анализ.
  • Логистическая регрессия.
  • Деревья решений.
  • Кластерный и факторный анализ данных.
Элементы контроля

Элементы контроля

  • неблокирующий контрольная работа - совокупность выполненных на занятиях с использованием ПО тестовых заданий
  • неблокирующий решение задач с использованием ПО
  • неблокирующий аудиторная работа.
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 4th module
    0.1 * аудиторная работа. + 0.45 * контрольная работа - совокупность выполненных на занятиях с использованием ПО тестовых заданий + 0.45 * решение задач с использованием ПО
Список литературы

Список литературы

Рекомендуемая основная литература

  • SPSS: искусство обработки информации : анализ стат. данных и восстановление скрытых закономерностей: пер. с нем., Бююль, А., 2002
  • Анализ данных : учебник для вузов / под редакцией В. С. Мхитаряна. — Москва : Издательство Юрайт, 2024. — 448 с. — (Высшее образование). — ISBN 978-5-534-19964-2. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/557384 (дата обращения: 04.07.2025).
  • Анализ социологических данных с помощью пакета SPSS : учеб. пособие для вузов, Крыштановский, А. О., 2006
  • Базовые методы анализа данных : учебник и практикум для вузов, Миркин, Б. Г., 2024
  • Математика : учебник для вузов, Богомолов, Н. В., 2024
  • Прикладной регрессионный анализ, Дрейпер, Н. Р., 2007
  • Теория вероятностей и математическая статистика : учеб. пособие, Мхитарян, В. С., 2013

Рекомендуемая дополнительная литература

  • Математические методы психологического исследования : анализ и интерпретация данных: учеб. пособие, Наследов, А. Д., 2006
  • Теория вероятностей и математическая статистика : учебник для вузов, Гмурман, В. Е., 2021

Авторы

  • Богданова Татьяна Кирилловна