• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2024/2025

Некоммутативная алгебра 2

Статус: Дисциплина общефакультетского пула
Когда читается: 3, 4 модуль
Охват аудитории: для всех кампусов НИУ ВШЭ
Язык: английский
Кредиты: 6

Course Syllabus

Abstract

Associative rings and modules over them appear naturally in all domains of Mathematics. The goal of this course is to present some basic results on rings and modules, as well as to discuss several interesting examples and applications.
Learning Objectives

Learning Objectives

  • -
Expected Learning Outcomes

Expected Learning Outcomes

  • ---
Course Contents

Course Contents

  • Basic notions and examples of rings and modules
  • Simple modules and Schur’s lemma
  • Semisimple modules and Jacobson’s density theorem
  • Artinian and noetherian conditions
  • Jordan – Hölder theorem
  • Krull – Remak – Schmidt theorem
  • Applications to the Galois (and non – Galois) theory
  • Wedderburn – Artin theorem
  • Applications to the representation theory of finite groups
  • Categories of modules and their equivalences
  • Simple and semisimple rings and Brauer groups
Assessment Elements

Assessment Elements

  • non-blocking Problem sets
  • non-blocking Exam
Interim Assessment

Interim Assessment

  • 2024/2025 4th module
    min[10,20/3((ratio of solved problem of the problem sets) + (ratio of solved problem of the final exam))]. A half-integer grade is rounded to the bigger nearest integer, another fractional grade is rounded to the nearest integer
Bibliography

Bibliography

Recommended Core Bibliography

  • Некоммутативные кольца, Херстейн, И., 1972

Recommended Additional Bibliography

  • Noncommutative algebraic geometry and representations of quantized algebras, Rosenberg, A. L., 1995

Authors

  • Rovinskii Marat Zefirovich
  • Kolesnikov Aleksandr Viktorovich
  • Иконописцева Юлия Вахтаногвна