2024/2025



Группы и алгебры Ли
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус:
Дисциплина общефакультетского пула
Кто читает:
Факультет математики
Где читается:
Факультет математики
Когда читается:
1, 2 модуль
Охват аудитории:
для всех кампусов НИУ ВШЭ
Преподаватели:
Ильин Алексей Игоревич
Язык:
русский
Кредиты:
6
Программа дисциплины
Аннотация
Группы и алгебры Ли и их представления являются важнейшим инструментом в таких, казалось бы далеких друг от друга областях математики как алгебраическая топология, алгебраическая и дифференциальная геометрия, динамические системы и математическая физика. Данный курс является вводным курсом групп и алгебр Ли, начиная с базовых определений и примеров. Предварительная подготовка: Необходимо хорошее владение линейной алгеброй и анализом на многообразиях, а также начальными понятиями топологии (включая понятия фундаментальной группы и локально-тривиального расслоения). Желательно (но не обязательно) знание теории представлений конечных групп (теорема Машке и ортогональность характеров).
Цель освоения дисциплины
- Курс преследует двоякую цель: во-первых, овладение основными понятиями и общими конструкциями теории Ли, и, вовторых, разбор первой конкретной содержательной задачи теории групп и алгебр Ли — классификации конечномерных представлений унитарной (а также полной линейной) группы.
Планируемые результаты обучения
- Знание основных понятиях теории представлений алгебр Ли и групп Ли, умение решать различные конкретные задачи, пользуясь алгебрами Ли, навыки применения техники теории представлений в различных областях математики
Содержание учебной дисциплины
- Определение и примеры групп Ли. Действие группы Ли на многообразии. Замкнутые подгруппы и однородные пространства. Связные группы Ли и группа компонент.
- Определение и примеры алгебр Ли. Алгебра Ли группы Ли. Формальная группа Ли. Инвариантные векторные поля. Экспоненциальное отображение.
- Гомоморфизмы групп Ли. Касательный гомоморфизм алгебр Ли. Теорема существования и единственности гомоморфизма. Односвязные группы Ли. Теорема существования (без доказательства) и единственности связной односвязной группы Ли с данной алгеброй Ли.
- Представления групп и алгебр Ли. Универсальная обертывающая алгебра. Теорема Пуанкаре – Биркгофа – Витта. Коумножение в универсальной обертывающей алгебре и тензорное произведение представлений.
- Представления алгебры Ли sl2. Оператор Казимира.
- Мера Хаара. Представления компактных групп Ли: полная приводимость и ортогональность характеров. Представления группы Ли SU2
- Представления унитарной (полной линейной) группы
Промежуточная аттестация
- 2024/2025 2nd moduleИтоговая оценка вычисляется по формуле 0.4*Э +0.2*К+0.2*Л+0.2*Д, где К — контрольная в средние семестра, Э — письменный экзамен, Д — домашние работы, Л — оценка за листки.