• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2024/2025

Стохастические процессы в финансовом менеджменте

Лучший по критерию «Новизна полученных знаний»
Статус: Курс по выбору (Бизнес-информатика)
Направление: 38.03.05. Бизнес-информатика
Когда читается: 4-й курс, 3 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для всех кампусов НИУ ВШЭ
Преподаватели: Попов Виктор Юрьевич
Язык: русский
Кредиты: 4

Программа дисциплины

Аннотация

Стохастические процессы — это процессы, описывающие изменения одной или нескольких величин при наличии неопределенности. Такие процессы используются в финансовом менеджменте при анализе динамики цен, доходностей и рисков активов, которые характеризуются той или иной степенью неопределенности. В курсе будут рассмотрены непрерывные стохастические процессы, описывающие доходности и риски финансовых активов. Рассмотрим теорию стохастических непрерывных процессов цен активов и доходов. Затем выясним, как стохастические процессы применяются к ценообразованию производных финансовых инструментов. Рассмотрим концепцию риск-нейтральности и ценообразование производных финансовых инструментов в рамках этой концепции. Статистические задачи занимают значительно место в математике, экономике, финансах, особенно в случае необходимости учета флуктуационных эффектов. Наибольшую популярность и простоту имеют стохастические процессы, построенные на основе теории марковских случайных процессов диффузионного типа, а так же процессы, флуктуирующие параметры которых являются гауссовыми случайными величинами. Для описания таких процессов и необходим аппарат стохастических дифференциальных уравнений. Цель данного курса – показать взаимосвязь финансов, экономики и теории стохастических процессов – как различные задачи, описываемые стохастическими уравнениями, могут быть решены при помощи общего подхода, известного в уравнениях в частных производных. Учебная дисциплина посвящена изучению случайных процессов и стохастических дифференциальных уравнений в финансовом менеджменте. Курс имеет важное значение в системе обучения студента специальности Бизнес-информатика. Студенты, освоившие дисциплину, приобретают знания о случайных процессах и стохастических дифференциальных уравнениях и навыки их практического использования. Курс предполагает проверку теоретических знаний путем написания контрольных работ и сдачи экзамена, а также практических навыков через выполнение проектной работы. Изучение дисциплины базируется на курсах: математический анализ, вероятностные и статистические модели управления. Основные положения дисциплины могут быть использованы в практической и научной деятельности, связанной с анализом стохастических процессов, временных рядов, моделированием и прогнозированием сложных процессов и систем в условиях неопределенности.
Цель освоения дисциплины

Цель освоения дисциплины

  • Формирование представления о случайных процессах (СП) и стохастических дифференциальных уравнениях (СДУ) и о применении их для решения задач финансового менеджмента
  • Формирования понимания теоретических основ, допущений и ограничений теории СП и СДУ
  • Формирование навыков применения методов теории СП и СДУ для решения исследовательских и прикладных задач финансового менеджмента
  • Формирования навыков анализа СП, финансовых временных рядов, СДУ и их решений
  • Формирование навыков синтеза новых знаний в результате применения теории СП и СДУ для решения теоретических и прикладных задач
  • Формирование навыков оценки производных финансовых инструментов с использованием методов теории СП и СДУ
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать вывод уравнения Фоккера-Планка-Колмогорова, понимать его смысл и смысл начальных и граничных условий. Уметь находить некоторые решения уравнения Фоккера-Планка-Колмогорова для рассмотренных в курсе случаев.
  • Знать и понимать теорию случайного блуждания. Уметь решать задачу о разорении игрока. Знать и понимать процессы рождения и гибели, уметь выводить основные формулы. Знать и понимать процесс Пуссона
  • Знать и уметь использовать в принятии решений методы финансовой математики. Уметь решать задачи по рассмотренным в курсе темам, в том числе, с использованием компьютерных методов.
  • Знать основные понятия и свойства винеровского процесса и уметь применять их при решении теоретических и практических задач.
  • Знать основные понятия теории случайных процессов и уметь применять их при решении теоретических и практических задач.
  • Знать понятие интеграла Ито, формулу Ито, их свойства и уметь применять их при решении теоретических и практических задач. Уметь делать замены переменных в выражениях, содержащих стохастические слагаемые
  • Знать понятие стохастического дифференциального уравнения, основные типы стохастических дифференциальных уравнений курса , понимать их смысл. Знать методы их решений и уметь применять их для решения теоретических и практических задач. Уметь решать рассмотренные на занятиях и в процессе самостоятельно работы стохастические дифференциальные уравнения, в том числе при помощи численных методов.
  • Уметь выводить уравнение Блэка-Шоулза и понимать его смысл. Знать и понимать допущения модели Блэка-Шоулза. Уметь приводить уравнение Блэка – Шоулса к каноническому виду. Уметь находить решение уравнения Блэка-Шоулза. Знать и понимать смысл формулы Блэка – Шоулса. Знать, понимать и уметь использовать на практике методы оценки производных финансовых инструментов в модели Блэка – Шоулза и их арбитражные свойства. Знать модель стохастической волатильности.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Элементы финансовой математики
  • Основы теории случайных процессов
  • Винеровский процесс.
  • Интеграл Ито, формула Ито,
  • Стохастические дифференциальные уравнения.
  • Уравнение Фоккера-Планка-Колмогорова.
  • Уравнение Блэка – Шоулса.
  • Случайные блуждания.
Элементы контроля

Элементы контроля

  • неблокирующий Активность на лекциях и семинарах, самостоятельная работа.
  • неблокирующий Экзамен
    Письменный экзамен в аудитории или онлайн (продолжительность написания экзаменационной работы - 120 минут
  • неблокирующий Посещение аудиторных и/или онлайн лекций и семинаров
  • неблокирующий Защита проекта по тематике дисциплины на предложенную и согласованную тему
  • неблокирующий Контрольная работа 2 (случайные процессы и стохастические дифференциальные уравнения)
  • неблокирующий Контрольная работа 1 (финансовая математика)
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 3rd module
    0.05 * Активность на лекциях и семинарах, самостоятельная работа. + 0.1 * Защита проекта по тематике дисциплины на предложенную и согласованную тему + 0.1 * Контрольная работа 1 (финансовая математика) + 0.1 * Контрольная работа 2 (случайные процессы и стохастические дифференциальные уравнения) + 0.05 * Посещение аудиторных и/или онлайн лекций и семинаров + 0.6 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Вавилов, С. А.  Финансовая математика. Стохастический анализ : учебник и практикум для вузов / С. А. Вавилов, К. Ю. Ермоленко. — Москва : Издательство Юрайт, 2025. — 244 с. — (Высшее образование). — ISBN 978-5-534-02650-4. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/560845 (дата обращения: 04.07.2025).
  • Шиловская, Н. А.  Финансовая математика : учебник и практикум для вузов / Н. А. Шиловская. — 3-е изд., испр. и доп. — Москва : Издательство Юрайт, 2025. — 214 с. — (Высшее образование). — ISBN 978-5-534-18636-9. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/561385 (дата обращения: 04.07.2025).

Рекомендуемая дополнительная литература

  • Брусов П. Н., Филатова Т. В. - Финансовая математика - 978-5-16-005134-5 - НИЦ ИНФРА-М - 2025 - https://znanium.ru/catalog/product/2157043 - 2157043 - ZNANIUM
  • Касимов, Ю. Ф.  Финансовая математика : учебник и практикум для вузов / Ю. Ф. Касимов. — 5-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2025. — 459 с. — (Высшее образование). — ISBN 978-5-534-17374-1. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/559777 (дата обращения: 04.07.2025).
  • Мочалина, Е. П., Финансовая математика и ее приложения : учебник / Е. П. Мочалина, Г. В. Иванкова. — Москва : КноРус, 2025. — 278 с. — ISBN 978-5-406-13429-0. — URL: https://book.ru/book/956882 (дата обращения: 04.07.2025). — Текст : электронный.
  • Сдвижков, О. А., Финансовая математика в Excel : учебное пособие / О. А. Сдвижков. — Москва : КноРус, 2025. — 261 с. — ISBN 978-5-406-14156-4. — URL: https://book.ru/book/956761 (дата обращения: 04.07.2025). — Текст : электронный.

Авторы

  • Попов Виктор Юрьевич