• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2024/2025

Введение в представление знаний

Статус: Курс по выбору (Науки о данных (Data Science))
Направление: 01.04.02. Прикладная математика и информатика
Когда читается: 2-й курс, 1, 2 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Прогр. обучения: Науки о данных
Язык: английский
Кредиты: 6

Course Syllabus

Abstract

Knowledge Representation and Reasoning (KRR) is a field in artificial intelligence (AI) that focuses on how to represent information in a way that a computer system can use to make decisions with human-like reasoning. Knowledge representation involves structuring information in a form that a computer can understand. A way to do this is by using ontologies or knowledge graphs, which allows for relationships and hierarchies within your data to be represented. Reasoning refers to the process of drawing conclusions, making inferences, and solving problems based on the information in the knowledge graph. With a reasoning engine, these logical operations can be performed on the represented knowledge to derive new information.
Learning Objectives

Learning Objectives

  • KRR systems are more expressive than traditional databases so make it easier to model complex knowledge.
  • Greater flexibility in the way data is structured makes KRR ideal to represent real world relationships and concepts
  • Reasoning transforms this data into valuable information, both to the benefit of performance and insights that can be extracted.
Expected Learning Outcomes

Expected Learning Outcomes

  • understand and use deductive database systems
  • understand and use the ontology language OWL 2 and its profiles
  • understand and use the RDF framework and associated technologies such as RDFa and SPARQL
  • understand fundamental concepts, advantages and limitations of Semantic Technologies
  • understand relational databases and XML documents
  • understand the basics of knowledge representation with description logics
  • understand the principles of ontology-based data access and integration
Course Contents

Course Contents

  • Introduction
  • XML/XML Schema, XPath
  • RDF/RDFs, language Turtle
  • Query language SPARQL
  • OWL
  • Reasoning with OWL
  • Tableau Algorithm for Reasoning in Description Logics
  • Ontology engineering
  • Deductive databases
  • Ontology-based data access
Assessment Elements

Assessment Elements

  • non-blocking HW1-XPATH
  • non-blocking HW2-RDF
  • non-blocking HW3-SPARQL
  • non-blocking HW4-DL
  • non-blocking HW5-Ontology
  • non-blocking Exam
Interim Assessment

Interim Assessment

  • 2024/2025 2nd module
    0.5 * Exam + 0.1 * HW1-XPATH + 0.1 * HW2-RDF + 0.1 * HW3-SPARQL + 0.1 * HW4-DL + 0.1 * HW5-Ontology
Bibliography

Bibliography

Recommended Core Bibliography

  • Foundations of semantic Web technologies, Hitzler, P., 2010
  • Programming the Semantic Web, Segaran, T., 2009

Recommended Additional Bibliography

  • Kripke's worlds : an introduction to modal logics via tableaux, , 2014

Authors

  • Антропова Лариса Ивановна
  • KIKOT STANISLAV PAVLOVICH