• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2022/2023

Методы машинного обучения в биоинформатике

Направление: 01.04.02. Прикладная математика и информатика
Когда читается: 1-й курс, 1, 2 модуль
Формат изучения: с онлайн-курсом
Онлайн-часы: 14
Охват аудитории: для своего кампуса
Преподаватели: Попцова Мария Сергеевна, Федоров Александр Николаевич
Прогр. обучения: Анализ данных в биологии и медицине
Язык: английский
Кредиты: 6
Контактные часы: 56

Course Syllabus

Abstract

The course introduces students to the theory and practice of applying machine learning algorithms to solve problems in the field of bioinformatics. The main goal is to provide students with a comprehensive understanding of modern methods of data analysis and the construction of predictive models. During the course, students will learn the key stages of working with data: from preprocessing and dimensionality reduction methods to techniques for building, optimizing, and validating models. The course program covers a wide range of algorithms, including linear regression with regularization (ridge regression, lasso, elastic network), support vector machine (SVM), neural networks, k-nearest neighbor (k-NN) method, classification and regression trees, as well as ensemble methods such as random forest and gradient boosting. Special attention is paid to practical work: seminars are aimed at developing skills in working with specialized software tools and libraries for predictive modeling. The classes will cover a variety of real-world cases and applied problems based on datasets from the field of bioinformatics.