• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2025/2026

Методы сэмплинга и генеративного моделирования

Статус: Курс обязательный (Математика машинного обучения)
Когда читается: 1-й курс, 3 модуль
Охват аудитории: для своего кампуса
Язык: английский
Кредиты: 3
Контактные часы: 40

Course Syllabus

Abstract

In this course we present an introduction to different techniques of generating random variables from a given probability distribution. We focus on the setting when the distribution is known analytically, that is, on the sampling problem. At the same time, we mention connections with the generative modeling setup, when input data is represented by a fixed sample from the distribution of interest. In our course we cover some recent developments in MCMC algorithms, and consider other approaches, such as generative flow networks (GFlowNets) and diffusion samplers.