Магистратура
2025/2026





Бизнес-аналитика и ИИ как инструмент эффективного управления
Статус:
Курс обязательный (Маркетинг: цифровые технологии и маркетинговые коммуникации)
Кто читает:
Департамент бизнес-информатики
Где читается:
Высшая школа бизнеса
Когда читается:
2-й курс, 2 модуль
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
3
Контактные часы:
24
Программа дисциплины
Аннотация
Курс охватывает как теоретические, так и практические аспекты бизнес-аналитики (BA) и инструментов ИИ в контексте реальных бизнес-задач. В условиях насыщенной данными среды бизнес нуждается в аналитике, чтобы оставаться конкурентоспособным. Курс делает акцент на аналитике данных как методе получения инсайтов из цифровых данных. Также рассматривается применение инструментов ИИ в бизнес-анализе. Задания курса обучают студентов работе с BI-сервисами для извлечения, обработки, анализа и визуализации данных, инструментов обработки данных и создания моделей машинного обучения. Цель курса — помочь студентам принимать более эффективные решения на основе данных. Курс включает лекции, анализ данных, создание ИИ моделей, кейсы, обсуждения и групповой проект, в рамках которого студенты отрабатывают применение методов BA и ИИ к реальным данным и задачам бизнеса.
Цель освоения дисциплины
- Выбирать подходящие инструменты и методы бизнес-аналитики для решения задач.
- Интерпретировать результаты анализа данных.
- Применять бизнес-аналитику к реальным бизнес-задачам.
- Использовать различные источники данных и инструменты в процессе анализа.
- Находить, извлекать, оценивать и подготавливать данные для анализа.
- Создавать понятные визуализации данных и презентации.
- Разрабатывать интерактивные дашборды и отчеты с помощью инструментов бизнес-аналитики.
Планируемые результаты обучения
- Владеть навыками подготовки аналитических материалов по результатам исследовательских и аналитических проектов для информационного обеспечения принятия управленческих решений
- Владеть навыками применения современных техник и методик сбора данных, продвинутых методов их обработки и анализа, методами количественного и качественного анализа для принятия управленческих решений
- Умеет извлекать данные из источников, анализировать качество данных, обнаруживать статистические особенности данных и выявлять аномалии
- Уметь обрабатывать эмпирические и экспериментальные данные
Содержание учебной дисциплины
- Предварительный анализ данных
- Методы и модели анализа данных
- Представление результатов анализа данных
Элементы контроля
- Домашнее задание 1
- ЭкзаменЭкзамен в виде очной защиты проекта
- Аудиторная работа
- Домашнее задание 2
- Отчет по проектуАналитический отчет и презентация итогового мини-проекта
Промежуточная аттестация
- 2025/2026 2nd module0.1 * Аудиторная работа + 0.25 * Домашнее задание 1 + 0.25 * Домашнее задание 2 + 0.2 * Отчет по проекту + 0.2 * Экзамен
Список литературы
Рекомендуемая основная литература
- Adam Aspin. (2020). Pro Power BI Desktop : Self-Service Analytics and Data Visualization for the Power User: Vol. Third edition. Apress.
- Aurélien Géron. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow : Concepts, Tools, and Techniques to Build Intelligent Systems: Vol. Second edition. O’Reilly Media.
- Dr. Ossama Embarak. (2018). Data Analysis and Visualization Using Python : Analyze Data to Create Visualizations for BI Systems. Apress.
- Маккинни, У. Python и анализ данных. Первичная обработка данных с применением pandas, NumPy и Jupiter : справочник / У. Маккинни , перевод с английского А. А. Слинкина. — 3-е изд. — Москва : ДМК Пресс, 2023. — 536 с. — ISBN 978-5-93700-174-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/348086 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
- Миркин, Б. Г. Введение в анализ данных : учебник и практикум / Б. Г. Миркин. — Москва : Издательство Юрайт, 2023. — 174 с. — (Высшее образование). — ISBN 978-5-9916-5009-0. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/511121 (дата обращения: 04.07.2025).
Рекомендуемая дополнительная литература
- Joshua N. Milligan. (2019). Learning Tableau 2019 : Tools for Business Intelligence, Data Prep, and Visual Analytics, 3rd Edition. Birmingham: Packt Publishing. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=2092866
- Кондрашов, Ю. Н., Язык SQL. Сборник ситуационных задач по дисциплине «Базы данных» : учебно-практическое пособие / Ю. Н. Кондрашов. — Москва : Русайнс, 2023. — 125 с. — ISBN 978-5-466-02005-2. — URL: https://book.ru/book/947081 (дата обращения: 04.07.2025). — Текст : электронный.
- Рашка, С. Python и машинное обучение: крайне необходимое пособие по новейшей предсказательной аналитике, обязательное для более глубокого понимания методологии машинного обучения : руководство / С. Рашка , перевод с английского А. В. Логунова. — Москва : ДМК Пресс, 2017. — 418 с. — ISBN 978-5-97060-409-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/100905 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
- Шарден, Б. Крупномасштабное машинное обучение вместе с Python : учебное пособие / Б. Шарден, Л. Массарон, А. Боскетти , перевод с английского А. В. Логунова. — Москва : ДМК Пресс, 2018. — 358 с. — ISBN 978-5-97060-506-6. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/105836 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.