• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2025/2026

Теория вероятностей и математическая статистика

Статус: Курс обязательный (Информационная безопасность)
Когда читается: 2-й курс, 1-3 модуль
Охват аудитории: для своего кампуса
Язык: русский
Контактные часы: 122

Программа дисциплины

Аннотация

Данный курс входит в классическое математическое образование и преподается студентам второго курса в течение трех модулей. В первой части курса (теория вероятностей) рассматриваются классические темы начиная с аксиоматики и заканчивая предельными теоремами. Относительно большее внимание уделяется моментам случайных величин. Вторая часть "Математическая статистика" в основном посвящена методам статистического вывода: выборочные распределения, точечные и интервальные оценки, проверка гипотез. В ходе изложения курса приводятся иллюстрирующие примеры, помогающие студенту применить полученные знания для решения практической задачи, а не концентрироваться на запоминании вывода формул. Тем не менее обсуждаются все основные теоретические конструкции, а также все относительно компактные доказательства.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью курса является знакомство студентов с аппаратом теории вероятностей и математической статистики и развитие навыков решения практических задач в рамках теоретико-вероятностного и статистического подхода. Дисциплина является базисом для ряда будущих и текущих дисциплин, таких, как "Моделирование систем и процессов", "Машинное обучение" и др.
Планируемые результаты обучения

Планируемые результаты обучения

  • знать и уметь применять правила комбинаторики для подсчета количества событий, знать и применять аксиомы теории вероятностей для решения задач, включая теоретико-множественный подход
  • по окончании соответствующего раздела курса студенты должны понимать и оперировать на практике концепцией условной вероятности, понимать суть независимости событий, уметь пользоваться формулой полной вероятности и формулой Байеса.
  • по окончании соответствующего раздела курса студенты должны понимать суть дискретной случайной величины и способы ее задания в виде распределения, знать свойства функции распределения, уметь рассчитывать моменты произвольного распределения, знать основные виды распределений.
  • по окончании соответствующего раздела курса студенты должны понимать суть непрерывной случайной величины, знать способы ее задания в виде плотности и функции распределения, знать свойства последних, знать основные виды используемых на практике распределений непрерывных величин, особенно нормального
  • по окончании соответствующего раздела курса студенты должны знать способы задания многомерной случайной величины, уметь проводить маржинализацию распределений, получать условные распределения и моменты. Знать и уметь пользоваться формальным определением независимости случайных величин. Уметь рассчитывать корреляцию между парами случайных величин. Уметь выводить и пользоваться выражением для плотности суммы двух независимых величин
  • по окончании соответствующего раздела курса студенты должны понимать суть и уметь использовать на практике закон больших чисел и центральную предельную теорему
  • по окончании соответствующего раздела курса студенты должны понимать общий подход к построению распределения параметров распределения и знать их вид для среднего, доли, разности средних и разности долей.
  • по окончании соответствующего раздела курса студенты должны знать принципы построения точечных и интервальных оценок, знать формулу разложения среднеквадратичной ошибки на смещение и разброс, уметь строить доверительные интервалы для различных параметров распределения
  • по окончании соответствующего раздела курса студенты должны знать общий принцип тестирования гипотез, применять его для вывода о параметрах распределения или его вида.
  • по окончании соответствующего раздела курса студенты должны знать и уметь пользоваться на практике моделями линейной регрессии, включая оценку параметров методом наименьших квадратов и построения соответствующих доверительных интервалов.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Введение: основы комбинаторики, аксиомы теории вероятностей
  • Дискретные случайные величины
  • Условные вероятности и независимость событий
  • Непрерывные случайные величины
  • Многомерные случайные величины
  • Предельные теоремы
  • Предмет и методы статистики
  • Выборочные распределения
  • Точечные и интервальные оценки параметров распределения
  • Тестирование гипотез.
Элементы контроля

Элементы контроля

  • неблокирующий вероятности дискретных случайных величин
  • неблокирующий моменты распределений
  • неблокирующий проверка гипотез
  • неблокирующий активность работы на семинарах
  • неблокирующий экзамен 1
  • блокирующий экзамен 2
Промежуточная аттестация

Промежуточная аттестация

  • 2025/2026 1st module
    0.09 * активность работы на семинарах + 0.21 * вероятности дискретных случайных величин + 0.7 * экзамен 1
  • 2025/2026 3rd module
    0.045 * активность работы на семинарах + 0.045 * активность работы на семинарах + 0.105 * моменты распределений + 0.105 * проверка гипотез + 0.7 * экзамен 2
Список литературы

Список литературы

Рекомендуемая основная литература

  • Гмурман, В. Е.  Руководство к решению задач по теории вероятностей и математической статистике : учебное пособие для вузов / В. Е. Гмурман. — 11-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2021. — 406 с. — (Высшее образование). — ISBN 978-5-534-08389-7. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/468330 (дата обращения: 27.08.2024).
  • Гмурман, В. Е.  Теория вероятностей и математическая статистика : учебник для вузов / В. Е. Гмурман. — 12-е изд. — Москва : Издательство Юрайт, 2021. — 479 с. — (Высшее образование). — ISBN 978-5-534-00211-9. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/468331 (дата обращения: 27.08.2024).
  • Зубков, А. М. Сборник задач по теории вероятностей : учебное пособие для вузов / А. М. Зубков, Б. А. Севастьянов, В. П. Чистяков. — 4-е изд., стер. — Санкт-Петербург : Лань, 2022. — 320 с. — ISBN 978-5-8114-9085-1. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/184062 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Рекомендуемая дополнительная литература

  • Введение в теорию вероятностей и ее приложения, Феллер, В., 1964
  • Введение в теорию вероятностей и ее приложения. Т. 2: ., Феллер, В., 1984
  • Введение в теорию вероятностей и ее приложения. Т.1: ., Феллер, В., 1984
  • Кремер, Н. Ш.  Математическая статистика : учебник и практикум для вузов / Н. Ш. Кремер. — Москва : Издательство Юрайт, 2020. — 259 с. — (Высшее образование). — ISBN 978-5-534-01654-3. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/451060 (дата обращения: 27.08.2024).
  • Курс теории вероятностей : Учебник, Гнеденко, Б. В., 2001
  • Ширяев, А. Н. Вероятность-1 : учебное пособие / А. Н. Ширяев. — Москва : МЦНМО, 2007. — 552 с. — ISBN 978-5-94057-105-6. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/9448 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Авторы

  • Князева Ирина Васильевна
  • Голубин Алексей Юрьевич