• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2025/2026

Введение в дифференциальную геометрию

Статус: Курс по выбору (Математика)
Когда читается: 1-й курс, 1, 2 модуль
Охват аудитории: для своего кампуса
Язык: английский
Кредиты: 6

Course Syllabus

Abstract

The course serves as an introduction to the main topics of Differential geometry: an initial introduction to symplectic and contact geometry, the theory of affine connections on manifolds, Riemannian manifolds, geodesics. PRELIMINARY PREPARATION: Linear algebra, differential equations, analysis on manifolds
Learning Objectives

Learning Objectives

  • In this course you will learn the basic tools of differential geometry. The main subjects of study will be differential forms on manifolds, Riemannian metrics, vector and principal bundles, connections, curvatures, characteristic classes, complex and almost complex structures.
Expected Learning Outcomes

Expected Learning Outcomes

  • Learn smooth manifolds
  • Learn differential forms
  • Learn Riemannian metric
  • Learn vector bundles
  • Learn curvature
  • Learn curvarure
  • Learn covariant derivatives
  • Learn complex varieties
Course Contents

Course Contents

  • Smooth manifolds
  • Differential forms on manifolds.
  • Riemannian metric on a manifold, geodesics, Hodge’s operator
  • Vector bundles and principal bundles on manifolds
  • Connections on principal and vector bundles, covariant differentiation
  • Connectivity curvature. Characteristic classes
  • Covariant derivatives and metrics. Riemannian curvature tensor.
  • Complex and almost complex varieties
Assessment Elements

Assessment Elements

  • Partially blocks (final) grade/grade calculation Презентация задач на семинарах
  • blocking Экзамен
Interim Assessment

Interim Assessment

  • 2025/2026 2nd module
    0.25 * Презентация задач на семинарах + 0.25 * Презентация задач на семинарах + 0.5 * Экзамен
Bibliography

Bibliography

Recommended Core Bibliography

  • Differential analysis on complex manifolds, Wells, R. O., 2008
  • Differential and riemannian manifolds, Lang, S., 1995

Recommended Additional Bibliography

  • Differential geometry : connections, curvature, and characteristic classes, Tu, L. W., 2017

Authors

  • Uvarov Filipp Viktorovich
  • Иконописцева Юлия Вахтаногвна