• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2025/2026

Математический анализ 2

Язык: русский
Кредиты: 3
Контактные часы: 80

Программа дисциплины

Аннотация

Дисциплина представляет из себя стандартный курс математического анализа 2-го года, ориентированный на студентов, специализирующихся в прикладной математике. Курс содержит числовые ряды, функциональные ряды, кратные интегралы. В рамках данного курса студенты так же познакомятся с рядами Фурье и преобразованием Фурье, которое смогут изучить более подробно в последующих курсах.
Цель освоения дисциплины

Цель освоения дисциплины

  • Знать основы теории рядов, кратного интегрирования, криволинейных и поверхностных интегралов, рядов и преобразования Фурье.
  • Уметь практически применять навыки работы с числовыми и функциональными рядами (включая ряды Тейлора и Фурье, производящие функции), кратными, криволинейными и поверхностными интегралами, преобразованием Фурье.
  • Уметь решать задачи математического анализа численными методами (приближенное вычисление кратных интегралов, оценка скорости сходимости рядов и интегралов, метод градиентного спуска).
Планируемые результаты обучения

Планируемые результаты обучения

  • Уметь решать задачи математического анализа численными методами (приближенное вычисление кратных интегралов, оценка скорости сходимости рядов и интегралов, метод градиентного спуска).
  • Уметь самостоятельно решать нестандартные задачи повышенной сложности
  • Уметь строить логические цепочки и строгие математические доказательства
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Кратный интеграл Римана, необходимое условие интегрируемости, свойства интеграла.
  • Множество лебеговой меры нуль. Свойства множеств лебеговой меры нуль.
  • Топология R^n, критерий компактности в R^n.
  • Теорема Вейерштрасса о непрерывной функции на компакте. Колебания функции на множестве и в точке. Теорема Кантора-Гейне о колебаниях функции на компакте. Критерий Лебега интегрируемости функции по Риману.
  • Критерий Лебега (продолжение). Верхние и нижние суммы Дарбу, свойства. Верхний и нижний интегралы Дарбу, теорема об интегралах как пределах сумм Дарбу. Критерий Дарбу. Допустимые множества, интеграл по допустимому множеству.
  • Мера Жордана. Свойства интеграла Римана по допустимым множествам. Теоремы Фубини для бруска и для допустимого множества. Формула замены переменных в кратном интеграле Римана.
  • Равномерная сходимость функциональной последовательности. Критерий Коши, теорема о предельном переходе, теоремы о непрерывности/интегрируемости/дифференцируемости предельной функции.
  • Теоремы о интегрируемости/дифференцируемости предельной функции.
  • Равномерная сходимость функционального ряда.
  • Степенные ряды, теорема Коши-Адамара. Непрерывность, дифференцируемость и интегрируемость степенного ряда. Разложение функций в степенной ряд, табличные разложения.
  • Евклидовые и нормированные пространства. Основная тригонометрическая система.
  • Ряды Фурье, экстремальное свойство коэффициентов Фурье
  • Полные системы. Критерий полноты ОНС, равенство Парсеваля.
  • Полнота основной тригонометрической системы.
  • Лемма Римана.
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание
    Выдается раз в неделю и содержит 4-7 задач по теме Семинара.
  • неблокирующий Листки с дополнительными задачами
    Выдается 1-2 листка с задачам и сверх пройденного материала для дополнительного развития студентов
  • неблокирующий Коллоквиум 1
    Проходит в устной форме, студенту выдают билет с несколькими теоретическими вопросами, студенту дают 30-40 минут на подготовку, пользоваться какими-либо материалами запрещено. Тема: интеграл Римана, кратные интегралы, числовые и функциональные ряды, степенные ряды
  • неблокирующий Коллоквиум 2
    Проходит в письменной форме, студенту выдают билет с несколькими теоретическими вопросами и задачами, студенту дают 80 минут на подготовку, пользоваться какими-либо материалами запрещено. Тема: Теория тригонометрических рядов Фурье.
  • неблокирующий Контрольная работа
    Проводится в письменном виде, всего 5-6 задач.
  • неблокирующий Экзамен
    Экзамен проходит в письменной форме в аудитории (дистанционно для студентов, официально проходящих курс онлайн), пользоваться какими-либо материалами запрещено, длится 120 минут. Всего 5-6 задач.
  • неблокирующий Лабораторная работа
    Оценивается решение задач. Оценка приводится к 10–бальной шкале.
  • неблокирующий Мини-контрольная
    Оцениваются ответы на вопросы по нескольким предыдущим лекциям.
Промежуточная аттестация

Промежуточная аттестация

  • 2025/2026 2nd module
    Итог = min(Округление(0.1 * ДЗ + 0.15*КЛ1+0,1*КЛ2 + 0.2 * КР+0.01*Л+0.1*Лаб + 0.1*МК + 0.35 * Э), 10) где ДЗ = min (10; средняя оценка за все домашние задания + О_сем), О_сем - дополнительный балл в размере 0, 0.3, 0.6 или 1, который семинарист может высставить студенту за активное участие в работе семинаров, КЛ1 - оценка за коллоквиум 1, КЛ2 - оценка за коллоквиум 2, КР — оценка за контрольную работу, Л - оценка за решение листков с дополнительными задачами, МК - оценка за мини-контрольные на лекциях, Лаб - оценка за лабороторную работу Э — оценка за экзамен.
Список литературы

Список литературы

Рекомендуемая основная литература

  • Демидович, Б. П. Сборник задач и упражнений по математическому анализу : учебное пособие для вузов / Б. П. Демидович. — 24-е изд., стер. — Санкт-Петербург : Лань, 2022. — 624 с. — ISBN 978-5-8114-9078-3. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/184105 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления : учебник : в 3 т. Том 2 / Г. М. Фихтенгольц ; под. ред. А. А. Флоринского. - 10-е изд. - Москва : ФИЗМАТЛИТ, 2018. - 864 с. - ISBN 978-5-9221-1803. - Текст : электронный. - URL: https://znanium.com/catalog/product/1223545

Рекомендуемая дополнительная литература

  • Демидович, Б. П. Сборник задач и упражнений по математическому анализу / Б. П. Демидович. — 25-е изд., стер. — Санкт-Петербург : Лань, 2023. — 624 с. — ISBN 978-5-507-47148-5. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/332675 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Кузенков, О. А. Введение в математический анализ. Практикум : учебно-методическое пособие / О. А. Кузенков, Е. А. Рябова. — Нижний Новгород : ННГУ им. Н. И. Лобачевского, 2019. — 63 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/144935 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Курс дифференциального и интегрального исчисления. Т. 2 : учебник: в 3 т., Фихтенгольц, Г. М., 2009

Авторы

  • Волкова Вера Константиновна
  • Кононова Елизавета Дмитриевна