• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2025/2026

Глубинное обучение в анализе графовых данных

Статус: Маго-лего
Когда читается: 1, 2 модуль
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 6
Контактные часы: 56

Программа дисциплины

Аннотация

В данном курсе рассматриваются классические и глубинные подходы для работы с данными, имеющими графовую структуру, - такими как, например, социальные сети, дорожные графы и графы знаний. В курсе, помимо классических постановок задач из машинного обучения, будут рассмотрены и довольно важные, специфичные для области задачи - например, восстановление графа знаний и генерация графов с заданными свойствами. Особый акцент будет сделан на глубинную парадигму работы с графами: вы познакомитесь с графовыми нейронными сетями и концепцией графовых сверток.
Цель освоения дисциплины

Цель освоения дисциплины

  • Понимать базовые понятия теории графов и их представления для машинного обучения.
  • Знать архитектуры основных типов графовых нейронных сетей (GCN, GAT, GraphSAGE и др.).
  • Уметь применять GNN для задач node-level, edge-level и graph-level классификации и регрессии.
  • Понимать принципы обучения GNN, включая проблему oversmoothing и методы её решения.
  • Уметь подготавливать графовые данные для обучения моделей.
  • Знать современные применения GNN в различных областях (химия, рекомендации, компьютерное зрение).
  • Уметь реализовывать и экспериментировать с моделями GNN с использованием фреймворков PyTorch и PyTorch Geometric.
Планируемые результаты обучения

Планируемые результаты обучения

  • Познакомиться с графовыми нейронными сетями и концепцией графовых сверток
  • Восстановить граф знаний и сгенерировать графы с заданными свойствами
  • Работать с данными, имеющими графовую структуру
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Постановка смысла применения графовых нейросетей. Повторение базовых алгоритмов на графах.
  • Алгоритмы на графах и переход в графовые нейросети.
  • Графовые нейросети и принципы их обучения.
  • Применение графовых нейросетей в задачах Computer Vision.
  • Применение графовых нейросетей в задачах Natural Language Processing.
  • Графовые свертки.
  • Графы знаний (Knowledge Graphs)
  • Эмбеддинги на графах
  • Генеративные графовые нейросети
  • Применение графовых нейросетей в рекомендательных системах
  • Применение графовых нейросетей в антифроде
  • Разбор специфичных практических применений из последних успешных проектов (по типу уникального распознавания mnist, дорожных сетей)
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание
  • неблокирующий Контрольная работа
Промежуточная аттестация

Промежуточная аттестация

  • 2025/2026 2nd module
    0.3 * Домашнее задание + 0.3 * Домашнее задание + 0.4 * Контрольная работа
Список литературы

Список литературы

Рекомендуемая основная литература

  • Network science, Barabasi, A.-L., 2019

Рекомендуемая дополнительная литература

  • Алгоритмы. Построение и анализ : пер. с англ., Кормен Т., Лейзерсон Ч., 2012

Авторы

  • Рословцева Кристина Олеговна
  • Фисенко Анна Сергеевна
  • Оруджева Альбина Александровна