Магистратура
2025/2026



Научно-исследовательский семинар "Современные тенденции в управлении и аналитике больших данных"
Статус:
Курс обязательный (Бизнес-аналитика и системы больших данных)
Кто читает:
Департамент бизнес-информатики
Где читается:
Высшая школа бизнеса
Когда читается:
2-й курс, 2, 3 модуль
Охват аудитории:
для своего кампуса
Преподаватели:
Джин Сеунгмин
Язык:
английский
Кредиты:
6
Контактные часы:
48
Course Syllabus
Abstract
This course's key objective is to make the students familiar with implementing the most important big data concepts in various business domains. We will discuss industries like: Banking and Securities; Communications, Media and Entertainment; Healthcare; Education; Manufacturing and Natural Resources; Government; Insurance; Retail and Wholesale trade
Expected Learning Outcomes
- Describe the ethics, governance, and sustainability challenges relating to Big Data
- Design and evaluate an approach for the architecture of infrastructure for Big Data products based upon particular needs, including selecting an appropriate set of technologies, and governance strategy for storage and processing data
- Discuss the impact of digitization and the adoption of Big Data in business and overall society
- Explain the challenges of creating and maintaining Big Data products
- Demonstrate effective utilization of LLMs in academic writing while maintaining research integrity and scholarly standards
Course Contents
- Latest Trend of Scientific Writing using LLMs
- The Importance of Data Storytelling
- Low-Code Deep Learning with ChatGPT
- Data Culture and Ethics
- Generative AI and prompt engineering
- Big Data Ecosystem
- (Big) Data Management
- Data Products and Economics
Interim Assessment
- 2025/2026 3rd moduleThe final grade is calculated by weighting and summing the raw scores, followed by min-max normalization, with caps on grade distributions based on student ranks to adjust the overall distribution. The specific formulas and distribution details are as follows. Raw Score Calculation Formula The overall raw score is computed as a weighted sum: Raw Score = 0.1 × Class Activity + 0.2 × Review Assignment + 0.2 × Peer-Review Project (2) + 0.25 x Exam + 0.25 x Project 1 Normalization Formula: The raw score is normalized using the minimum (min) and maximum (max) values across all students: Normalized Score = (Raw Score - min(All Raw Scores)) / (max(All Raw Scores) - min(All Raw Scores)) × 100 Grade Distribution and Caps Normalized scores are assigned based on student rank order, with caps applied to maintain the following distribution across all students: 5 points (top tier): Up to 30% of students 4 points: Up to 40% of students 3 points or below: The remaining 30% of students
Bibliography
Recommended Core Bibliography
- 11 essentials of effective writing, Radaskiewicz McNeely, A. M., 2014
- GPT-3 : the ultimate guide to building NLP products with OpenAI API, Kublik, S., 2022
- GPT-4. Руководство по использованию API Open AI, Эль Амри, А., 2024
- Malaska, T., & Seidman, J. (2018). Foundations for Architecting Data Solutions : Managing Successful Data Projects: Vol. First edition. O’Reilly Media.
- Thomas Erl, Wajid Khattak, & Paul Buhler. (2016). Big Data Fundamentals : Concepts, Drivers & Techniques. Prentice Hall.
Recommended Additional Bibliography
- Jules S. Damji, Brooke Wenig, Tathagata Das, & Denny Lee. (2020). Learning Spark. O’Reilly Media.
- Kleppmann, M. (2017). Designing Data-Intensive Applications : The Big Ideas Behind Reliable, Scalable, and Maintainable Systems. Sebastopol, CA: O’Reilly Media. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1487643
- Mark Richards, & Neal Ford. (2019). Fundamentals of Software Architecture : An Engineering Approach. O’Reilly Media.