Бакалавриат
2025/2026





Введение в дискретную математику и топологию
Статус:
Курс обязательный (Математика)
Кто читает:
Факультет математики
Где читается:
Факультет математики
Когда читается:
1-й курс, 1-3 модуль
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
8
Контактные часы:
130
Программа дисциплины
Аннотация
Курс "Введение в дискретную математику и топологию" предназначен для первоначального знакомства с концептуальной базой, языком и методами формальной математики. Мы обсудим те математические структуры (множества, отношения, отображения, метрические и топологические пространства), базовое владение которыми необходимо для дальнейшего изучения анализа, геометрии и комбинаторики.
Цель освоения дисциплины
- Студенты должны освоить базовые навыки строгих математических рассуждений с использованием математических структур теоретико-множественной или топологической природы
Планируемые результаты обучения
- Будут достигнуты цели, поставленные в курсе "Введение в дискретную математику и топологию"
Содержание учебной дисциплины
- Алгебра высказываний
- Множества и предикаты
- Бинарные отношения и отображения
- Натуральные числа, индукция
- Подсчеты
- Мощность множеств
- Неформальное введение в топологию
- Топология прямой
- Метрические пространства
- Примеры и свойства метрических пространств
- Полнота метрических пространств
- Компактность метрических пространств
- Аппроксимации в метрических пространствах
- Топологическая размерность
- Топологические пространства
- Факторпространства
- Топология поверхностей
Элементы контроля
- Индивидуальное домашнее заданиеПолное описание индивидуальных домашних заданий (задания и дедлайны) доступно на образовательном портале Smart LMS в разделе дисциплины «Введение в дискретную математику и топологию». Для доступа к платформе необходимо войти через единый личный кабинет (ЕЛК), воспользовавшись личным логином и паролем.
- Листки: решение задачПолное описание заданий и дедлайны доступны на образовательном портале Smart LMS в разделе дисциплины «Введение в дискретную математику и топологию». Для доступа к платформе необходимо войти через единый личный кабинет (ЕЛК), воспользовавшись личным логином и паролем.
- Работа на семинаре
- КолоквиумКоллоквиум предполагается провести в ноябре. Получившие неудовлетворительную оценку могут пересдать в соответствующую зачетную неделю
- Индивидуальное домашнее заданиеПолное описание индивидуальных домашних заданий (задания и дедлайны) доступно на образовательном портале Smart LMS в разделе дисциплины «Введение в дискретную математику и топологию». Для доступа к платформе необходимо войти через единый личный кабинет (ЕЛК), воспользовавшись личным логином и паролем
- КоллоквиумКоллоквиум предполагается провести в марте. Получившие неудовлетворительную оценку могут пересдать в соответствующую зачетную неделю
- ЛисткиПолное описание заданий и дедлайны доступны на образовательном портале Smart LMS в разделе дисциплины «Введение в дискретную математику и топологию». Для доступа к платформе необходимо войти через единый личный кабинет (ЕЛК), воспользовавшись личным логином и паролем.
- Работа на семинаре
Промежуточная аттестация
- 2025/2026 2nd moduleИтоговая оценка совпадает с накопленной, экзамена не предусмотрено. Накопленная оценка вычисляется на основании четырех оценок по 10-балльной системе за следующие формы контроля. Л --- оценка за сдачу листков (сдаются в течение семестра); К --- оценка за коллоквиум; И --- оценка за индивидуальные домашние задания (сдаются в течение семестра); С --- оценка за работу на семинарах (выставляется в конце преподавателем семинаров). Накопленная оценка Х вычисляется так: Если Л не меньше 8, то Х=Л; если Л < 8, и К < 4, то Х=К; в остальных случаях Х=МИН (10, 1/3(Л+К+И+С)), округление по стандартным правилам.
- 2025/2026 3rd moduleИтоговая оценка совпадает с накопленной, экзамена не предусмотрено. Накопленная оценка вычисляется на основании четырех оценок по 10-балльной системе за следующие формы контроля. Л --- оценка за сдачу листков (сдаются в течение семестра); К --- оценка за коллоквиум; И --- оценка за индивидуальные домашние задания (сдаются в течение семестра); С --- оценка за работу на семинарах (выставляется в конце преподавателем семинаров). Накопленная оценка Х вычисляется так: Если Л не меньше 8, то Х=Л; если Л < 8, и К < 4, то Х=К; в остальных случаях Х=МИН (10, 1/3(Л+К+И+С)), округление по стандартным правилам.
Список литературы
Рекомендуемая основная литература
- Вводный курс математической логики / В.А. Успенский, Н.К. Верещагин, В.Е. Плиско. - 2-e изд. - М.: ФИЗМАТЛИТ, 2007. - 128 с.: 60x90 1/16. (обложка) ISBN 978-5-9221-0278-0, 2000 экз. - Режим доступа: http://znanium.com/catalog/product/129565
- Ландо, С. К. Введение в дискретную математику : учебное пособие / С. К. Ландо. — Москва : МЦНМО, 2012. — 264 с. — ISBN 978-5-4439-2019-1. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/56405 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
- Элементарная топология, Виро, О. Я., 2010
Рекомендуемая дополнительная литература
- Александров П. С. - Введение в теорию множеств и общую топологию - Издательство "Лань" - 2021 - ISBN: 978-5-8114-0981-5 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/167808
- Наглядная топология, Прасолов, В. В., 2006