Бакалавриат
2025/2026
Прикладная статистика в машинном обучении
Статус:
Курс обязательный (Компьютерные науки и анализ данных)
Когда читается:
3-й курс, 1, 2 модуль
Охват аудитории:
для своего кампуса
Язык:
русский
Программа дисциплины
Аннотация
Для тех, кто учил математическую статистику на втором курсе, остаётся не вполне ясным, как её применять на практике. Действительно, с большим объёмом фундаментальных и важных математических фактов прикладной аспект статистики остаётся за кадром. Освоивший математическую статистику умеет выписать метод максимального правдоподобия для выборки независимых наблюдений, применить несколько базовых математических тестов для проверки одной гипотезы по заданию и использовать метод наименьших квадратов для того, чтобы подогнать линейную модель под данные. Всё же, можно ли использовать метод максимального правдоподобия в случае зависимых наблюдений? Как соотнести исследовательский вопрос с набором критериев и дать более сложный ответ на него с использованием статистики? Наконец, так ли верны предположения линейной регрессии (теорема Гаусса-Маркова) на практике? А если нет, то можно ли за них побороться?Мы в своём курсе предлагаем посмотреть, как уже известные идеи можно применить в различных практических ситуациях. Мы начинаем с более детального исследования метода максимального правдоподобия в контексте (пока ещё) непривычных практических ситуаций, как, например, оценка марковских цепей и других случайных процессов, и мы приводим EM-алгоритм, который можно рассматривать как естественное продолжение метода максимального правдодобия. Далее мы переходим к изучению линейной регрессии и борьбе за её предположения, которые нам необходимы, если мы хотим получить интерпретируемую модель, которая не обязательно хорошо предсказывает, но способна многое объяснить про данные. Последний третий блок посвящён прикладной статистике, где мы представляем универсальный набор инструментов аналитика и обсуждаем АБ-тестирование с практической стороны, правильно встраивая статистику в общую схему АБ-тестирования.Если вы хорошо знаете математическую часть статистики, но задавались вопросом, что можно из неё получить в практическом плане, или вы не очень помните, но очень хотите узнать, почему и зачем её стоит учить, то заходите на наш курс и мы постараемся вам дать хороший ответ, который, возможно, позже наведёт вас на многие необычные практические идеи.