• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2025/2026

Неопределённость и нечёткость при анализе данных и принятии решений

Статус: Маго-лего
Когда читается: 1, 2 модуль
Охват аудитории: для своего кампуса
Язык: русский

Программа дисциплины

Аннотация

Дисциплина «Неопределенность и нечеткость при анализе данных и принятии решений» структурно состоит из двух частей. Первая часть посвящена обучению навыкам работы с нечеткими данными. Во второй части рассматриваются некоторые модели описания неопределенности, возникающие при принятии решений и анализе данных. В целом данный курс позиционируется в рамках сравнительно нового научного направления «обобщенной теории информации» (G.J. Klir). Обобщение классической теории информации осуществляется в двух направлениях. Первое связано с обобщением понятия множества – от классического понятия множества, где каждый элемент некоторого универсума либо принадлежит данному множеству, либо – нет, до понятия нечеткого множества, в котором все элементы универсума принадлежат данному множеству с некоторой степенью. Второе – обобщением понятия меры: от классического понятия меры множества (например, вероятностной меры) с сильной аксиомой аддитивности, до понятия монотонной (в общем случае неаддитивной) меры. Например, одной из популярных (и сложных) задач финансовой аналитики является прогнозирования курса валют или акций на валютной или фондовой бирже соответственно. Классическим инструментом прогнозирования является регрессионный анализ. При этом если для анализа используются точечные данные курса (например, цены закрытия) за некоторый предшествующий период времени, то могут быть применены классические методы регрессионного анализа. Но вместо точечных данных можно рассматривать интервалы курсов за периоды торгов или более сложные – нечеткие данные. В этом случае могут быть использованы методы нечеткого регрессионного анализа. С другой стороны, поведение курса валют или акций характеризуется большой степенью неопределенности, зависящей от ряда трудно формализуемых и трудно предсказуемых факторов: политических, психологических, макроэкономических и пр. В этом случае чаще всего приходится полагаться на экспертные оценки. Но небольшое количество экспертных оценок, их возможная зависимость, противоречивость, различная степень надежности, исключают построение надежных статистических оценок. Поэтому такую информацию удобно представлять с помощью монотонных мер или с помощью других моделей в рамках более общей теории неточных вероятностей (imprecise probabilities). Монотонные меры не требуют своего задания на множестве (алгебре) всех подмножеств элементарных событий в отличие от вероятностной меры. Поэтому с их помощью можно моделировать ситуации отсутствия информации, ситуации, когда субъект (эксперт, классификатор, метод кластеризации и т.д.) готов определять степень принадлежности истинной альтернативы только некоторым (но не всем!) подмножествам (например, принадлежность образа объединению некоторых классов). Все эти и многие другие вопросы будут рассмотрены в анонсируемой дисциплине. Основными темами курса являются: - нечеткие множества и операции над ними; - нечеткие отношения; - принцип обобщения Заде и нечеткие числа, сравнение нечетких чисел; - принятие решений при нечетких данных; - нечеткая классификация и кластеризация; - нечеткая регрессия; - виды неопределенности при принятии решений и анализе данных; - монотонные меры и основные классы монотонных мер; - элементы теории свидетельств (функций доверия); - моделирование неопределенности при принятии решений.