Бакалавриат
2025/2026





Алгебра
Статус:
Курс обязательный (Математика)
Кто читает:
Факультет математики
Где читается:
Факультет математики
Когда читается:
2-й курс, 1, 2 модуль
Охват аудитории:
для своего кампуса
Язык:
русский
Программа дисциплины
Аннотация
Алгебра является основным языком современной математики. Алгебраические структуры используются во всех разделах математики и математической физики. Дисциплина опирается на школьный курс алгебры, материалы летней школы "Матфак: предисловие" для поступивших на первый курс и материалы параллельных курсов анализа, геометрии и дискретной математики и топологии. Курс является базовой дисциплиной для студентов первого курса бакалавриата образовательной программы "Математика"
Цель освоения дисциплины
- Цель изучения дисциплины Алгебра 1 состоит в освоении базовых конструкций теории коммутативных колец, теории полей, линейной алгебры и теории групп. Предполагается, что студент, освоивший дисциплину, сможет уверенно пользоваться теоретическими основами теории и применять их для решения математических задач различного происхождения, использующих алгебраические структуры.
Планируемые результаты обучения
- Знакомство с классификация конечнопорожденных абелевых групп. Понимание структуры модулей над евклидовыми кольцами.
- Знание основ теории колец многочленов от нескольких переменных.
- Знание основных опеределений и конструкций теории симметрических многочленов. Знакомство с основными приложениями.
- Знание основных определений и примеров, умение строить конечные поля.
- Знание основных понятий и конструкций линейной алгебры: векторные пространства, линейные отображения, двойственные пространства, определители.
- Знание формулировок и доказательств теорем Гильберта о базисе и об инвариантах. Знакомство с основными приложениями.
- Освоение алгоритма Евклида, умение находить наибольший общий делитель элементов кольца.
- Освоение базовых определений и конструкций теории групп: подгруппы, нормальные делители, классы смежности, факторгруппы. Умение строить и описывать действия групп на множествах.
- продолжение знакомства с рядом разделов современной алгебры, в том числе основами теории Галуа и теории представлений групп.
- Умение работать с кольцами вычетов, умение пользоваться фактор конструкциями.
- Умение применять деление с остатком, НОД и НОК, алгоритм Евклида – Гаусса, решение линейных диофантовых уравнений, свойства взаимно простых элементов и факториальность в арифметических задачах про целые числа.
- Умение умножать, делить и возводить в степени вычеты, выяснять, является ли вычет квадратичным, использовать кольца вычетов для решения арифметических задач
- Делить многочлены с остатком, находить нод и нок многочленов и выражать их линейно через исходные многочлены, исследовать наличие общих корней, применять КТО и интерполяционный многочлен Лагранжа.
- Эффективно вычислять нод и нок целых чисел, решать линейные диофантовы уравнения, знать свойства взаимно простых элементов и доказывать единственность разложения на простые множители. Умножать, делить и возводить в степени вычеты, использовать кольца вычетов и КТО для решения арифметических задач. Выяснять является ли вычет квадратичным. Знать свойства гомоморфизмов абелевых групп, коммутативных колец и полей и пользоваться ими для анализа и решения задач.
- Свободно вычислять с многочленами и степенными рядами (в том числе от нескольких переменных), дифференцировать, интегрировать и мультипликативно обращать ряды. Делить многочлены с остатком, находить нод и нок многочленов и их линеные выражения через исходные многочлены, исследовать наличие кратных и общих корней, применять КТО для многочленов. Эффективно вычислять в кольцах и полях \kk[x]/(f), особенно - в поле Cи в конечных полях, знать нетривиальные примеры конечных полей и их классификацию.
- Знать конструкцию локализации коммутативного кольца и дробей со знаменателями в мультипликативной системе. Описывать поля частных целостных колец целых чисел, многочленов, степенных рядов. Раскладывать рациональные функции на простейшие дроби и в степенные ряды и использовать эти разложения в практических вычислениях, возникающих в алгебре и анализе. Уметь решать линейные рекуррентные уравнения конечного порядка с постоянными коэффициентами.
- Складывать, умножать, делить (когда возможно), дифференцировать и интегрировать ряды. Делить многочлены с остатком. Находить нод и нок многочленов, исследовать наличие корней и кратных корней у многочлена и общих корней нескольких многочленов, применять КТО и интерполяционную формулу Лагранжа. Эффективно вычислять (в частности, умножать и делить) в кольцах и полях \kk[x]/(f), особенно - в поле C и в конечных полях. Знать нетривиальные примеры конечных полей и их полную классификацию.
- Эффективно вычислять со степенными рядами, в том числе умножать, делить, дифференцировать и интегрировать. Применять экспоненцирование и логарифмирование рядов и метод производящих функций для решения практических задач из алгебры, анализа и комбинаторики, уметь пользоваться формулой бинома, раскладывать элементарные функции в степенные ряды, применять метод Ньютона для разложения неявных алгебраических функций в дробно-степенные ряды.
- Знать примеры идеалов и факторколец, примеры нефакториальных колец. Доказывать факториальность ОГИ. Уметь раскладывать целые простые числа на неприводимые множители в кольцах гауссовых и эйзенштейновых чисел. Доказывать факториальность кольца многочленов над факториальным кольцом, исследовать многочлены с целыми коэффициентами на неприводимость и владеть техникой их разложение на неприводимые множители.
- Знать определения и базисные свойства модулей и векторных пространств, понимать, чем линейная зависимость над полем отличается от линейной зависимости над коммутативным кольцом. Задавать модуль образующими и соотношениями и выяснять, когда заданный на образующих гомоморфизм корректно продолжается по линейности на весь модуль, в частности, вычислять Hom(Z/(m)Z/(n)).
- Эффективно вычислять с матрицами над кольцом и использовать короткие матричные обозначения для выражения одних наборов векторов через другие, записи систем линейных уравнений, задания линейныйх отображений. Знать таблицу умножения базисных матриц и свойства нильпотентных матриц, вычислять с матрицами, не прибегая к поэлементному умножению, обращать унитреугольные матрицы.
- Знать элементарный базис модуля симметрических многочленов и эффективно выражать произвольный симметрический многочлен в виде полинома от элементарных, а также использовать эту технику в решении задач.
- Умение диагонализовать целочисленную матрицу (потенциально - матрицу над произвольным кольцом главных идеалов) и найти обратимые матрицы, на которые она умножилась слева и справа в процессе диагонализации. Эффективно применять это умение для обращения матриц, решения систем линейных диофантовых уравнений, отыскания взаимного базиса и инвариантных множителей подрешётки в Z^n.
- Использовать жорданово и фробениусово представления абелевой группы для решения качественных задач: выяснения изоморфности групп и подгрупп, отыскания минимального числа образующих, анализ наличия подгрупп с предписанными свойствами и т.п.
- Эффективно вычислять в абелевых группах, заданных образующими и соотношениями: определять порядки элементов, их принадлежность подгруппам, описывать группы гомоморфизмов и т.п.
- Эффективно вычислять с грассмановыми многочленами и владеть разнообразной техникой вычисления определителей и миноров. Использовать определители для решения однородных и неоднородных систем линейных уравнений (правила Крамера), обращения матриц, исключения неизвестных из систем полиномиальных уравнений, отыскания числа элементов в факторе решётки по подрешётке и инвариантных множителей подрешёток и матриц.
- Знать несколько доказательств тождества Гамильтона-Кэли и уметь применять его для решения качественных задач про матрицы и линейные отображения. Знать свойства характеристического многочлена матрицы и линейного оператора.
- Знать жорданову и фробениусову классификацию линейных операторов над произвольным полем, эффективно находить соответствующие нормальные формы, инвариантные множители и элементарные делители данного оператора, выяснять подобны ли два оператора.
- Выяснять качественные свойства линейного оператора: приводимость, разложимость, нильпотентность, полупростоту, диагонализуемость, наличие циклического вектора. Находить собственные числа, собственные подпространства и корневое разложение.
- Эффективно вычислять аналитические функции от операторов при помощи полиномиальной интерполяции, в частности степенные функции (включая корни), экспоненту, логарифм и т.п., и пользоваться этим при решении практических вычислительных задач анализа, линейной алгебры и комбинаторики.
- Знать определения и примеры групп и их подгрупп.
- Эффективно вычислять с перестановками: находить композиции перестановок, знак, порядок, цикловой тип, централизатор и класс сопряжённости данной перестановки, вычислять число перестановок, коммутирующих с данной, и порядок класса сопряжённости данной перестановки .
- Находить длины и количество орбит действия конечной группы на конечном множестве и пользоваться этим для решения задач из алгебры, геометрии и комбинаторики. Находить порядки групп многогранников (включая диэдры), понимать связь этих групп с симметрическими группами и их подгруппами.
- Знакомство с более продвинутыми примерами групп: кватернионные единицы, группы Гайзенберга, проективные и аффинные линейные группы (в том числе над конечными полями) и т. п. и примеры изоморфизмов между ними.
- Знание достаточного количества примеров простых групп.
- Стандартные изоморфизмы типа $HN/N\simeq H/(H\cap N)$ и леммы о бабочке. Умение вычислять композиционные факторы и пользоваться теоремой Жордана-Гёльдера.
- Знание нетривиальных примеров полупрямых произведений. Умение применять теоремы Силова для анализа строения конечных групп. Умение анализировать группы порядка pq и pqr.
- Задавать конкретные группы образующими и соотношениями и работать с группами, заданными таким образом. Знать образующие и соотношения групп платоновых тел и симметрической группы.
- Иметь представление о группах, порождённых отражениями в гиперплоскостях евклидова пространства и их классификации: кокстеровские системы корней, графы Кокстера и их реализации группами отражений.
- Понимать, что такое полилинейное отображение. Вычислять тензорные произведения абелевых групп, векторных пространств, модулей, заданных образующими и соотношениями, примитивных расширений полей. Уметь пользоваться универсальным свойством тензорного произведения и каноническими изоморфизмами ассоциативности, коммутативности и дистрибутивности.
- Интерпретировать линейные отображения и полилинейные формы как тензоры и вычислять с ними на языке свёрток.
- Интерпретировать многочлены (в том числе грассмановы) как тензоры, поляризовать их, находить линейный носитель многочлена, понимать связь формулы Тейлора для многочленов с разложением бинома.
- Знать определения тензорной, симметрической и внешней алгебр. Понимать связь двух последних с многочленами (обычными и грассмановыми).
- Знать определение симметрических и кососимметрических тензоров. Понимать, что в характеристике нуль соответствующие пространства изоморфны пространствам однородных (грассмановых) многочленов.
- Знать разложения тензорного квадрата и тензорного куба векторного пространства в прямую сумму симметрических, кососимметричных (и лиевских) тензоров.
- Умение строить базис в овеществлении комплексного векторного пространства и понимать, какие вещественно линейные операторы на овеществлённом пространстве комплексно линейны на исходном.
- Умение строить базис в комплексификации вещественного векторного пространства и строить комплексно линейные и полуторалинейные продолжения вещественно линейных операторов и билинейных форм на комплексифицированное пространство.
- Строить продолжения евклидовых и симплектических пространств до эрмитовых.
- Вычислять длины, углы и ортогональные проекции в эрмитовом пространстве.
- Понимать, что происходит с собственными подпространствами, собственными числами и элементарными делителями вещественного оператора при его комплексификации и последующем овеществлении комплексифицированного оператора.
- Вычислять длины, углы и ортогональные проекции векторов в эрмитовом пространстве.
- Знать характеризующие свойства унитарных и (косо) эрмитовых операторов, находить диагональный вид нормального оператора и его нормальные оси, находить полярное разложение оператора. Знать и уметь пользоваться связностью и компактностью унитарной группы. Вычислять экспоенту от косоэрмитова оператора.
- Вычислять SVD-разложение и сингулярные числа комплексных матриц и комплексно линейных отображений между эрмитовыми пространствами, использовать эту технику для решения оптимизационных задач (минимизация углов и расстояний).
- Эффективно вычислять с кватернионами: умножать, делить, решать линейные уравнения и системы таких уравнений.
- Применять кватернионы к решению алгебраических и геометричеких задач, описывать в терминах кватернионов вращения евклидова пространства.
- Иметь представление о бинарных группах платоновых тел и связанных с ними группах четырёхмерных правильных многогранников.
Содержание учебной дисциплины
- Кольцо целых чисел.
- Теория представлений конечных групп. Характеры.
- Кольца вычетов
- Введение в теорию Галуа.
- Поля
- кольцо целых чисел
- Группы
- Линейная алгебра
- Модули над евклидовыми кольцами.
- Многочлены многих переменных.
- Теоремы Гильберта о базисе и об инвариантах.
- Симметрические многочлены и их приложения.
- Тензорное произведение векторных пространств, тензорные, симметрические и внешние алгебры.
- Кольца и поля вычетов
- Кольца многочленов.
- Поля, коммутативные кольца, абелевы группы.
- Ряды и многочлены
- Кольца и поля частных
- Многочлены и расширения полей
- Формальные степенные ряды
- Идеалы, фактор кольца, делимость и факториальные кольца.
- Модули над коммутативными кольцами
- Метод Гаусса в области главных идеалов
- Конечно порождённые абелевы группы
- Грассмановы многочлены и определители
- Пространство с оператором
- Базисные сведения о группах
- О строении групп
- Задание групп образующими и соотношениями
- Тензорное произведение модулей над коммутативным кольцом
- Тензорная алгебра векторного пространства
- Комплексные и вещественные векторные пространства
- Эрмитовы векторные пространства
- Кватернионы
Элементы контроля
- Письменные домашние задания
- Очная письменная контрольнаяПисьменная контрольная на 80 минут по материалу первого модуля.
- Письменный экзаменПисьменный экзамен на 3 часа по материалу всего курса
Промежуточная аттестация
- 2025/2026 2nd module0.3 * Очная письменная контрольная + 0.15 * Письменные домашние задания + 0.15 * Письменные домашние задания + 0.4 * Письменный экзамен
Список литературы
Рекомендуемая основная литература
- Алгебра, учебник для студентов-математиков, Ч. 1, 485 с., Городенцев, А. П., 2013
- Введение в алгебру, учебник : в 3 ч., Ч. I, 271 с., Кострикин, А. И., 2009
- Курс алгебры, Винберг, Э. Б., 2002
- Курс алгебры, Винберг, Э. Б., 2013
- Курс алгебры, Винберг, Э. Б., 2019
- Основные понятия алгебры, Шафаревич, И. Р., 2001
Рекомендуемая дополнительная литература
- Введение в алгебру. Ч.1: Основы алгебры, Кострикин, А. И., 2009
- Введение в алгебру. Ч.2: Линейная алгебра, Кострикин, А. И., 2009
- Городенцев, А. Л. Алгебра. Учебник для студентов-математиков : учебное пособие / А. Л. Городенцев. — Москва : МЦНМО, [б. г.]. — Часть 1 — 2014. — 485 с. — ISBN 978-5-4439-2087-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/56398 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.