Магистратура
2025/2026




Введение в программирование на Python
Статус:
Курс по выбору (Обучение и оценивание как наука)
Кто читает:
Департамент образовательных программ
Где читается:
Институт образования
Когда читается:
2-й курс, 1 модуль
Охват аудитории:
для всех кампусов НИУ ВШЭ
Преподаватели:
Павлова Анна Андреевна
Язык:
английский
Кредиты:
3
Контактные часы:
6
Course Syllabus
Abstract
The course is aimed at learning the basics of Python for quantitative data analysis in psychological research. During the course, students will get acquainted with the functionality of the main Python libraries for data analysis: Pandas, Numpy, Matplotlib, Seaborn, and also learn the basics of machine learning using the Scikit-learn library. The course involves taking an online Intro to Programming in Python course
Learning Objectives
- Mastering the Python programming language for solving a number of tasks in the field of data analysis
Expected Learning Outcomes
- Uses basic Python syntax to work with quantitative data
- Preprocesses data using numpy and pandas libraries (deleting/filling in gaps, creating new variables, managing variable types)
- Tests hypotheses about the relationship between variables using Python programming language packages and libraries (for example, Scipy, statsmodels)
- Visualizes quantitative data using the seaborn and matplotlib libraries of the Python programming language
- Selects suitable data analysis methods (for example, machine learning methods) for a specific task and implements them using the Python programming language
Course Contents
- The basics of Python
- Pandas
- Numpy
- Basic statistical analysis
- Data visualization
- Intro to ML
- Final project
Interim Assessment
- 2025/2026 1st module0.4 * Course Intro to Programming in Python – Stepik sertificate + 0.6 * Final project
Bibliography
Recommended Core Bibliography
- Guido Van Rossum, & Fred L. Drake. (2004). Python/C API Reference Manual Release 2.3.4. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.2FEE239A
Recommended Additional Bibliography
- Python for data analysis : data wrangling with pandas, numPy, and IPhython, Mckinney, W., 2017