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Abstract. This article aims at presenting recent advances in Formal
Concept Analysis (2010-2015), especially when the question is dealing
with complex data (numbers, graphs, sequences, etc.) in domains such
as databases (functional dependencies), data-mining (local pattern dis-
covery), information retrieval and information fusion. As these advances
are mainly published in artificial intelligence and FCA dedicated venues,
a dissemination towards data mining and machine learning is worthwhile.

1 Pattern Structures in Formal Concept Analysis

Formal Concept Analysis (FCA) is a branch of applied lattice theory that
appeared in the 1980’s [11]. Starting from a binary relation between a set of
objects and a set of attributes, formal concepts are built as maximal sets of
objects in relation with maximal sets of attributes, by means of derivation oper-
ators forming a Galois connection. Concepts form a partially ordered set that
represents the initial data as a hierarchy, called the concept lattice. This con-
ceptual structure has proved to be useful in many fields, e.g. artificial intelli-
gence, knowledge management, data-mining and machine learning, morphologi-
cal mathematics, etc. In particular, several results and algorithms from itemset
and association rule mining and rule-based classifiers were already character-
ized in terms of FCA [17,20]. For example, the set of frequent closed itemsets
is an order ideal of a concept lattice; association rules and functional dependen-
cies can be characterized with the derivation operators; jumping patterns were
defined as hypotheses, etc, not to mention efficient polynomial-delay algorithms
for building all closed itemsets such as CloseByOne [18].

The goal of this communication is to present our recent advances in FCA over
the period 2010-2015, especially when the question is dealing with complex data,
thanks to the rich formalism of pattern structures [10]. This general approach
translates FCA to any partially ordered data descriptions to deal elegantly with
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non binary, say complez, heterogeneous and structured data. Pattern structures
also allow new ways of solving problems in several applications (see next section).

The key idea relies on defining so-called similarity operators which induce
a semi-lattice on data descriptions. Several alternative attempts were made for
defining such semi-lattices on sets of graphs and logical formulas (see, e.g., the
works of Chaudron&Maille, Ferré&Ridoux, Polaillon&Brito cited in [16]). For-
mally, a pattern structure is a triple (G, (D,1),§) where G is a set of objects,
(D,N) is a meet-semi-lattice of potential object descriptions and § : G — D
is a mapping associating each object with its description. Elements of D are
called patterns and are ordered with a subsumption relation C: Ve,d € D,
¢cCd<= cnNd=c Forany A C G and d € (D,N), two derivation oper-
ators are defined: as A” = [1ycad(g) and d9 = {g € G|d C 5(g)}. These
operators form a Galois connection between (p(G), C) and (D, N). Pattern con-
cepts of (G, (D,N),d) are pairs of the form (A,d), A C G, d € (D,N), such that
AY = d and A = d”. For a pattern concept (A,d), d is a pattern intent and is
the common description of all objects in A, the pattern extent. When partially
ordered by (A,d;) < (As,ds) & A1 C As (< ds C dy), the set of all concepts
forms a complete lattice called pattern concept lattice.

Pattern structures offer a concise way to define closed patterns. They also
allow efficient polynomial-delay algorithms (modulo complexity of computing C
and M) [18]. In presence of large datasets, they offer natural approximation tools
(projections, detailed below) and achieve lazy classification [19].

Data Heterogeneity. When D is the power set of a set of items I, M and C
are the set intersection and inclusion resp.: pattern intents are closed itemsets
and we fall back in standard FCA settings. Originally, pattern structures were
introduced to handle objects described by labeled graphs [18]. We developed the
general approach in various ways for handling objects described by: numbers
and intervals [16], partitions [4], sequences [5] and trees [22].

Data Approximation. Pattern structure projections simplify computation and
reduce the number of concepts [10]. For example, a set of labeled graphs can
be projected as a set of k-chains [21], while intervals can be enlarged [12]. A
projection v associates any pattern to a more general pattern covering more
objects. A projection is M-preserving: Ve, d € D p(cMd) = ¥(c)Mp(d). We studied
how numerical data can be projected when a similarity relation between numbers
(symmetric, reflexive but not transitive relation) is considered and showed that a
projection can be performed as a pre-processing task. We also introduced a wider
class of projections [6]: while projections can only modify object descriptions,
o-projections modifies the semi-lattice of descriptions.

Data Representation. For any pattern structure, a representation context can
be built, which is a binary relation encoding the pattern structure. Concepts in
both data representations are in 1-1-correspondence. We studied this aspect for
several types of patterns, designing the transformation procedures and evaluating
in which conditions one data representation prevails [4,15]. We also showed that
the bijection does not hold in general for minimal generators (qualified as free or
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key in pattern mining) [15]. The impact of projections on representation contexts
are investigated with the new class of o-projections [6].

2 Applications

Database and Functional Dependencies. Characterizing and computing
functional dependencies (FDs) are an important topic in database theory (see
e.g. references in [4]). In FCA, Ganter & Wille proposed a first characteriza-
tion of FDs as implications in a formal context (binary relation) obtained after
a transformation of the initial data [11]. However, n? objects are created from
the n initial tuples. To overcome this problem, we present a characterization
of functional dependencies in terms of (partition) pattern structures that offers
additional benefits for the computation of dependencies [4]. This method can be
naturally generalized to other types of FDs (multi-valued and similarity depen-
dencies [3]).

Pattern Mining and Biclustering. Biclustering aims at finding local pat-
terns in numerical data tables. The motivation is to overcome the limitation of
standard clustering techniques where distance functions using all the attributes
may be ineffective and hard to interpret. Applications are numerous in biology,
recommendation, etc. (see references in [7,13]). In FCA, formal concepts are
maximal rectangles of T'rue values in a binary data-table (modulo columns/rows
permutations). Accordingly, concepts are binary biclusters with interesting prop-
erties: maximality (via a closure operator), overlapping and partial ordering of
the local patterns. Such properties are key elements of a mathematical defini-
tion of numerical biclusters and the design of their enumeration algorithms. We
highlight these links for several types of biclusters with interval [14] and parti-
tion pattern structures [7] and their representation contexts. Next investigations
concern dimensionality: a bijection between n-clusters and n + 1-concepts is
proven [13].

Information Retrieval. FCA has been used in a myriad of ways to support
a wide variety of information retrieval (IR) techniques and applications [9]: the
concept lattice represents concisely the document and the query space which can
be used as an index for automatic retrieval. In the last years, the Boolean IR
model (and consequently, FCA) has been considered as too limited for modern
IR requirements, such as large datasets and complex document representations.
Pattern structures have shown a great potential to reuse the body of work of
FCA-based IR approaches by providing support to complex document repre-
sentations, such as numerical and heterogeneous indexes [8]. In the context of
semantic web, a noticeable application of this model is RDF data completion [1].

Information Fusion for Decision Making. Merging information given by
several sources (databases, experts...) into an interpretable and useful format is a
tricky task. Fusion results may not be in suitable form for being used in decision
analysis. This is due to the fact that information sources are heterogeneous,
noisy and inconsistent. We investigated how FCA and pattern structures can
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be used in decision making when fusion is required: pattern concept lattices
(based on intervals) provide an information fusion space where maximal subsets
of information can be detected and support decision making [2].
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