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Abstract Biclustering numerical data became a popular data-mining task at the be-
ginning of 2000’s, especially for gene expression data analysis and recommender sys-
tems. A bicluster reflects a strong association between a subset of objects and a subset
of attributes in a numerical object/attribute data-table. So-called biclusters of similar
values can be thought as maximal sub-tables with close values. Only few methods
address a complete, correct and non-redundant enumeration of such patterns, a well-
known intractable problem, while no formal framework exists. We introduce impor-
tant links between biclustering and Formal Concept Analysis (FCA). Indeed, FCA
is known to be, among others, a methodology for biclustering binary data. Handling
numerical data is not direct, and we argue that Triadic Concept Analysis (TCA),
the extension of FCA to ternary relations, provides a powerful mathematical and
algorithmic framework for biclustering numerical data. We discuss hence both theo-
retical and computational aspects on biclustering numerical data with triadic concept
analysis. These results also scale to n-dimensional numerical datasets.
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1 Introduction

Taking roots in the work of Hartigan [13] in 1972 and extended by Mirkin in
1996 [27], numerical data biclustering then strongly attracted attention from the
beginning of 2000’s as a first answer to new challenges raised by gene expression data
analysis [11] and recommender systems design [1]. Starting from an object/attribute
numerical data-table, the goal is to group together some objects with some attributes
according to the values taken by these attributes for these objects. The main idea of
biclustering is to overcome the limitation of standard clustering techniques producing
partitions of objects where distance functions that use all the attributes may be
ineffective and hard to interpret [2]. For example, in gene expression data, it is
known that genes (objects) may share a common behavior for a subset of biological
situations (attributes) only: one should accordingly produce local patterns to char-
acterize biological processes, the latter should possibly overlap, since a gene may be
involved in several processes. The same remark applies for recommender systems,
where the taste of users for some items is realized by a so-called utility matrix (usually
very sparse): one is interested in local patterns characterizing groups of users that
strongly share almost the same tastes for a subset of items [1].

Accordingly, a bicluster is formally defined as a pair composed of a set of objects
and a set of attributes. Such a pair can be represented as a rectangle in a numerical
table, modulo rows and columns permutations. Table 1 is a numerical dataset with
objects in rows and attributes in columns, while each table entry corresponds to
the value taken by the attribute in column for the object in row. Table 2 illustrates
bicluster ({g1, g2, g3}, {m1,m2,m3}) as a grey rectangle that can be understood as a
sub-table of the original one. There are several types of biclusters in the literature,
depending on the relation between the values taken by their attributes for their
objects (as surveyed by Madeira and Oliveira [26]). The most simple case can be
understood as rectangles of equal values: a bicluster corresponds to a set of objects
whose attributes take exactly the same value, e.g. ({g1, g2, g3}, {m5}). Constant biclus-
ters only appear in idyllic situations. Accordingly, a straightforward generalization of
such biclusters lies in so-called biclusters of similar values: they are represented by
rectangles with almost identical, say similar, values (see [6, 19, 26] and to a similar
extent [9]). Table 2 illustrates a bicluster of similar values ({g1, g2, g3}, {m1,m2,m3})
where two values are said to be similar if their difference is no more than one.
Moreover, this bicluster is maximal: neither an object nor an attribute can be

Table 1 A numerical dataset m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7
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Table 2 A bicluster of similar
values

added without violating the similarity condition. The problem of biclustering that
we investigate in this paper consists in extracting all pairs (A, B), such that A and B
are maximal sets with respect to a similarity constraint between values.

To better understand our investigation, we recall a definition of bicluster of Prelic
et al. in binary data or relation, i.e. an object has or not an attribute [32]: inclusion-
maximal biclusters are defined as maximal sets of objects related to a maximal set of
attributes. As shown in [21], this definition exactly meets the one of formal concepts
in the Formal Concept Analysis theory (FCA, [12]). Hence, our general intuition is
that FCA can be used to answer the problem of biclustering numerical data, which is
not straightforward, FCA basically applying to binary data.

Formal Concept Analysis is a branch of applied lattice theory that appeared in the
1980’s [12, 38] and proved to be very useful in data analysis. It aims at representing
data as a formal concept hierarchy, the later being useful for many tasks of, among
others, knowledge management and data-mining [4, 33, 36, 39]. Starting from a
binary relation between a set of objects and their attributes, so-called formal concepts
are built as maximal sets of objects in relation with a maximal set of attributes. If we
represent the binary relation as a binary table (with objects as rows, attributes as
columns and 0/1 as values if an object has/has not an attribute), a formal concept is
represented as a maximal rectangle of 1 values (or crosses × in the following of this
paper such as in Fig. 1). The ordering of concepts among a complete lattice makes
overlapping of such local and maximal patterns natural. Then a complete enumer-
ation of patterns respecting some constraints like closure and minimal frequency is
possible [7, 24]. Indeed, the subsets of patterns satisfying these constraints is an order
ideal of the lattice of patterns.

It is now natural to argue that FCA can be considered as a kind of biclustering
method for binary data. As such, it has been applied to numerical data, and especially
to gene expression data after an adequate transformation, see e.g. [7, 30–32]. The
process that turns numerical data into binary data (discretization), usually called

Fig. 1 A dyadic context (with
a concept in grey) and its
concept lattice
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conceptual scaling in FCA, generally comes with a loss of information, and thus
the obtained formal concepts are not exactly and formally related with biclusters
(although they are good representatives). This being stated, biclustering binary data
is still attracting a lot of attention, to cope with several issues such as the number
of produced patterns and enabling a fault tolerance to leverage the strict notion
of maximality of formal concepts, see e.g. [5, 10, 14, 28, 29]. Biclustering directly
numerical data, without a priori binarization, has also been widely studied, and sev-
eral ad hoc algorithms have been proposed to extract specific kind of biclusters with
different algorithmic strategies (such as divide-and-conquer, greedy iterative search,
exhaustive enumeration as deeply surveyed in [26]). Indeed enumerating all biclusters
of a given type is an intractable problem and complete approaches generally fail.
Our main contribution states that such approach is possible when considering the
problem of extracting maximal bicluster of similar values in formal concept analysis
settings, outperforming the other existing algorithms for this task [6, 19]. Other
concerns of biclustering are to be able to consider multi-dimensional data (e.g. when
the expression of a gene is monitored in several situations across time [35, 40]) and
parallelization of the algorithms [8] which both are important issues we address in
this paper. This leads us to our main contributions.

Problem We consider here maximal biclusters of similar values, denoted by (A, B)
where A and B are respectively maximal sets of objects and attributes, such that
the values taken by these attributes for these objects are pairwise similar. Given a
similarity parameter θ , the similarity relation is defined as a �θ b ⇐⇒ |b − a| ≤ θ ,
for any numbers a and b . The problem is to design an approach that allows an exact,
correct and complete extraction of maximal biclusters of similar values.

Contribution 1 Triadic Concept Analysis (TCA) [25] is an extension of FCA to han-
dle ternary relations: an object has an attribute under a given condition. This leads to
triadic contexts, i.e. data are represented as a “box”, where so-called triadic concepts
can be seen as maximal sets of objects in relation with a maximal set of attributes
under a maximal set of conditions, i.e. a maximal “sub-box” of × in the context
(still with rows, columns and layers permutations). We show then, that after turning
the original numerical data in a triadic context without loss of information (with
interordinal scaling [12]), the resulting triadic concepts are in 1-1-correspondence
with the maximal biclusters of similar values for any similarity parameter θ (stating
if two values are similar or not). Then, such concepts can be organized in a trilattice
whose diagram gives a visualization of biclusters in the numerical dataset. Finally,
we show that this result naturally holds when considering n-dimensional numerical
datasets.

Contribution 2 Maximal biclusters of similar values for a user-defined similarity
parameter have been studied with complete approaches in [6, 19]. In [6], an algorithm
for extracting such biclusters is presented, while [19] shows how such biclusters can
be characterized by post-processing a concept lattice built from the numerical data
directly. We show that our first contribution can be easily adapted to answer this
problem, with a new generic algorithm TriMax that shows better results than its
competitors and can be naturally parallelized.
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For summarizing, this research article is two-fold: first, theoretical new links are
emphasized between biclustering and FCA in general, and TCA in particular, for a
better understanding of numerical pattern mining with closure operators. Secondly,
a computational aspect is investigated using these links: it allows one to bring back
a problem of biclustering into well known-settings (i.e. FCA and pattern-mining)
and comes with better computational properties and several perspectives of research.
Note that this paper paper extends our previous work [18] by adapting the method-
ology to n-dimensional data and showing how the set of concepts can be represented
by line diagrams.

The paper is organized as follows. Firstly, we present the preliminaries regarding
FCA and TCA in Section 2. Thanks to the introduced notations, we formally state
the problem in Section 3. The Sections 4, 5 respectively tackle our two main contri-
butions. The paper ends with a conclusion suggesting further research.

2 Formal concept analysis

Formal Concept Analysis (FCA) [12] is a mathematical framework for allowing one
to derive implicit relationships from a set of objects and their attributes. Starting
from a relation stating which objects have which attributes, it allows one to build a
so-called concept lattice. A concept is there seen as a maximal set of objects sharing
a maximal set of attributes. Ordering concepts with a specialization/generalization
relation gives rise to a concept lattice. This structure can be represented by a
diagram where classes of objects/attributes and ordering relations between classes
can be drawn, interpreted and used for data-mining, knowledge management and
discovery [36, 39].

2.1 Dyadic concept analysis

We use standard definitions from [12]. LetG and M be arbitrary sets and I ⊆ G× M
be an arbitrary binary relation between G and M. The triple (G,M, I) is called a
formal context, or dyadic context. Each g ∈ G is interpreted as an object, eachm ∈ M
is interpreted as an attribute. The fact (g,m) ∈ I is interpreted as “g has attributem”.
The two following derivation operators (·)′:

A′ = {m ∈ M | ∀g ∈ A : gIm} for A ⊆ G,

B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆ M

define a Galois connection between the powersets of G and M. The derivation
operators {(·)′, (·)′} put in relation elements of the lattices (℘ (G),⊆) of objects
and (℘ (M),⊆) of attributes and vice-versa. A Galois connection induces closure
operators (·)′′ and realizes a one-to-one correspondence between all closed sets of
objects and all closed sets of attributes. For A ⊆ G, B ⊆ M, a pair (A, B) such
that A′ = B and B′ = A, is called a formal concept, or dyadic concept. Concepts
are partially ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1). (A1, B1) is a
sub-concept of (A2, B2), while the latter is a super-concept of (A1, B1). With respect
to this partial order, the set of all formal concepts forms a complete lattice called the
concept lattice of the formal context (G,M, I), i.e. any subset of concepts has both a
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supremum (join) and an infimum (meet), see Theorem 1. For a concept (A, B) the
set A is called the extent and the set B the intent of the concept.

Theorem 1 (The Basic Theorem on Concept Lattices [12]) The concept lattice of a
context (G,M, I) is a complete lattice in which inf imum and supremum are given by:

∧

t∈T
(At, Bt) =

(
⋂

t∈T
At,

(
⋃

t∈T
Bt

)′′)

∨

t∈T
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⋃

t∈T
At

)′′
,
⋂

t∈T
Bt

)

Example Figure 1 shows a dyadic context and its concept lattice. Starting from an ar-
bitrary set of objects, say {g3}, one obtains concept ({g3}′′, {g3}′) = ({g3, g4}, {m2,m3})
(in grey). The diagram shows the resulting concept lattice: each node denotes a
concept while a line denotes an order relation between two concepts. The top (resp.
bottom) concept is the highest (resp. lowest) concept w.r.t. ≤. Reduced labeling
avoids to display the whole concept extents and intents. The extent of a concept has
to be considered as composed of all object labels attached to it and its sub-concepts;
the intent of a concept is composed of all attributes attached to it and its super-
concepts.1

2.2 Triadic concept analysis

Lehmann and Wille introduced Triadic Concept Analysis (TCA [25]) to handle
ternary relations between objects, attributes and conditions. Data are formalized by
a triadic context in which triadic concepts are defined.

Definition 1 (Triadic context) Data are represented by a triadic context K =
(G,M, B,Y), where G, M, and B are respectively called sets of objects, attributes
and conditions, and Y ⊆ G× M× B. The fact (g,m, b ) ∈ Y is interpreted as the
statement “Object g has attribute m under condition b”.

Example An example of such triadic context is given in Table 3 where the very first
cross (to the left) denotes the fact “Object g2 has attribute m1 under the condition
b 1, i.e. (g2,m1,b 1) ∈ Y. In this tabular representation, each table corresponds to the
projection of the triadic context for one condition. Another choice could have been
made.

Definition 2 (Triadic concept) A triadic concept of (G,M, B,Y) is a triple
(A1, A2, A3) with A1 ⊆ G, A2 ⊆ M and A3 ⊆ B satisfying the two following state-
ments: (i) A1 × A2 × A3 ⊆ Y and (ii) for X1 × X2 × X3 ⊆ Y, we have A1 ⊆ X1,
A2 ⊆ X2 A3 ⊆ X3 implies (A1, A2, A3) = (X1, X2, X3). If (G,M, B,Y) is repre-
sented by a three dimensional table, (i) means that a concept stands for a rectangular
parallelepiped full of crosses while (ii) characterizes component-wise maximality of

1More details on the ConExp software: http://conexp.sourceforge.net/.

http://conexp.sourceforge.net/
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Table 3 A triadic context
(G,M, B,Y) with the triadic
concept ({g3, g4},
{m2,m3}, {b1,b2,b3})

concepts. For a triadic concept (A1, A2, A3), A1 is called the extent, A2 the intent
and A3 the modus.

Example ({g3, g4}, {m2,m3}, {b 1,b 2,b 3}) is a triadic concept in the triadic context
represented by Table 3. Representing the triadic context as a box, where each
condition is a layer, one can observe that this triadic concept denotes a maximal rec-
tangular parallelepiped of crosses (modulo lines, columns and layers permutations).

Definition 3 (Outer derivation operators) To describe the derivation operators, it
is convenient to represent a triadic context as (K1,K2,K3,Y). Then, for {i, j, k} =
{1, 2, 3}, j < k, X ⊆ Ki and Z ⊆ Kj × Kk, (i)-derivation operators are defined by:

� : X → X (i) : {(a j, ak) ∈ Kj × Kk | (ai, a j, ak) ∈ Y for all ai ∈ X}
�

′ : Z → Z (i) : {ai ∈ Ki | (ai, a j, ak) ∈ Y for all (a j, ak) ∈ Z }
This definition leads to dyadic contexts

K
(1) = 〈K1, K2 × K3,Y(1)〉

K
(2) = 〈K2, K1 × K3,Y(2)〉

K
(3) = 〈K3, K1 × K2,Y(3)〉

where gY1(m,b ) ⇐⇒ mY2(g,b ) ⇐⇒ bY3(g,m).

Example Consider i = 1, j = 2 and k = 3, i.e. K1 = G, K2 = M and K3 = B. Given
an arbitratry set of objects X = {g4}, we have:

�(X) = {(m2, b 1), (m3,b 1), (m2,b 2), (m3, b 2), (m2, b 3), (m3,b 3)}
�′�(X) = {g3, g4}

Definition 4 (Inner derivation operators) Further derivation operators are defined
as follows: for {i, j, k} = {1, 2, 3}, Xi ⊆ Ki, Xj ⊆ Kj and Ak ⊆ Kk, the (i, j, Ak)-
derivation operators are defined by:

� : Xi → X (i, j,Ak)

i : {a j ∈ Kj | (ai, a j, ak) ∈ Y for all (ai, ak) ∈ Xi × Ak}
�

′ : Xj → X (i, j,Ak)

j : {ai ∈ Ki | (ai, a j, ak) ∈ Y for all (a j, ak) ∈ Xj × Ak}
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This definition yields the derivation operators of dyadic contexts defined by

K
ij
Ak

= 〈Ki,Kj,Y
ij
Ak
〉

where (ai, a j) ∈ Yij
Ak

⇐⇒ ai, a j, ak are related by Y for all ak ∈ Ak

Example Consider i = 1, j = 2 and k = 3, i.e. K1 = G, K2 = M and K3 = B, A3 =
{b 1,b 2} and X = {g3}:

�(X) = {m2,m3} � ′�(X) = {g3, g4}
Operators � and �

′
are called outer operators, a composition of both operators is

called outer closure. Operators � and �
′
are called inner operators, a composition

of them is called inner closure.

Definition 5 (Triadic concept formation) A concept having X1 in its extent can be
constructed as follows.

(
X (1,2,A3)(1,2,A3)

1 , X (1,2,A3)

1 , (X (1,2,A3)(1,2,A3)

1 × X (1,2,A3)

1 )(3)
)

Example In the previous example, we have ({g3, g4}, {m2,m3}, {b 1, b 2, b 3}).

From a computational point of view, [15] developed the algorithm Trias for
extracting frequent triadic concepts, i.e. whose extent, intent and modus cardinalities
are higher than user-defined thresholds (see also [16]). Cerf et al. presented a more
efficient algorithm calledData-peeler able to handle n-ary relations [10], the formal
definitions being given in terms of Polyadic Concept Analysis [37].

3 Problem settings

A numerical dataset is formalized by a many-valued context [12] and we define
accordingly (maximal) biclusters of similar values.

Definition 6 (Many-valued context) (G,M,W, I) is called many-valued context, or
simply numerical dataset in this paper, with G being a set of objects, M a set of
attributes, W the set of attribute values and I a ternary relation defined onG× M ×
W. The fact (g,m, w) ∈ I, also written m(g) = w, means that “Attribute m takes the
value w for the object g”.

Example 1 Table 1 is a numerical dataset, or many-valued context, with ob-
jects G = {g1, g2, g3, g4}, attributes M = {m1,m2,m3,m4,m5}, attribute values W =
{0, 1, 2, 6, 7, 8, 9} and for examplem5(g2) = 6.

Definition 7 (Bicluster) In a numerical dataset (G,M,W, I), a bicluster is a tuple
(A, B) with A ⊆ G and B ⊆ M.

Definition 8 (Similarity relation and bicluster of similar values) Let w1, w2 ∈ W
be two attribute values and θ ∈ R be a user-defined parameter, called similarity
parameter or threshold. w1 and w2 are said to be similar iff |w1 −w2| ≤ θ , which
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we denote by w1 �θ w2. (A, B) is bicluster of similar values if m(g) �θ n(h) for all
g,h ∈ A and for allm,n ∈ B.

Definition 9 (Maximal bicluster of similar values) A bicluster of similar values
(A, B) is maximal if adding either an object in A or an attribute in B does not result
in a bicluster of similar values.

Example 2 (From Table 1) ({g1, g4}, {m2,m4}) is a bicluster. ({g1, g2}, {m2}) is a
bicluster of similar values with θ ≥ 1. However, it is not maximal. With 1 ≤ θ < 5,
({g1, g2, g3}, {m1,m2,m3}) is maximal. Finally, with θ = 7 the bicluster ({g1, g2, g3},
{m1,m2,m3,m4,m5}) is maximal. Note that a constant (maximal) bicluster is a
(maximal) bicluster of similar values with θ = 0.

Thus the problem that we address in this article is the extraction of all maximal
biclusters of similar values from a numerical dataset. We desire the extraction to be
complete, correct and non-redundant compared to most of existing methods of the
literature based on heuristics [26]. We will show that FCA is a good candidate as a
formal framework for such a task.

4 Biclusters of similar values in triadic concept analysis

This first contribution considers the problemof generatingmaximal biclusters for any
θ with TCA after a scaling procedure. We then show how to represent the resulting
set of concepts with line diagrams, and extend the methodology to n-dimensional
numerical datasets.

4.1 Scaling numerical data into a triadic context

Starting from a numerical dataset (G,M,W, I), the basic idea lies in building a
triadic context (G,M,T,Y) where the two first dimensions remain formal objects
and formal attributes, while W is scaled into a third dimension denoted by T. This
new dimension T is called the scale dimension: intuitively, it gives different “spaces
of values” that each object-attribute pair (g,m) ∈ G× M can take. Once the scale is
given, a triadic context is derived and it gives rise to triadic concepts.

We use the interordinal scaling [12] to build the scale dimension. It allows one to
encode in 2T all possible intervals of values in W. This scale allows one to derive
a triadic context from which any bicluster of similar values can be characterized as
a triadic concept. We make these statements more precise and illustrate the whole
procedure with examples.

Definition 10 (Interordinal Scaling) A scale is a binary relation J ⊆ W × T associat-
ing original elements from the set of values W to their derived elements in T. In the
case of interordinal scaling, T = {[min(W), w], ∀w ∈ W} ∪ {[w,max(W)],∀w ∈ W}.
Then (w, t) ∈ J iff w ∈ t.

Example 3 Table 4 gives the tabular representation of the interordinal scale for
Table 1. Each row describes a single value, while dyadic concepts represent all
possible intervals over W. An example of dyadic concept in this table is given
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by ({6, 7, 8}, {t6, t7, t8, t9, t10}), rewritten as ({6,7, 8}, {[6, 8]}) since {t6, t7, t8, t9, t10}
represents the interval [0, 8] ∩ [0, 9] ∩ [1, 9] ∩ [2, 9] ∩ [6, 9] = [6, 8].

Definition 11 (Triadic scaled context) Let Y be a ternary relation Y ⊆ G× M × T.
Then (g,m, t) ∈ Y iff (m(g), t) ∈ J, or simplym(g) ∈ t. We call the tuple (G,M,T,Y)

the triadic scaled context of the numerical dataset (G,M,W, I).

Example 4 The object-attribute pair (g1,m1) taking value m1(g1) = 1 is scaled
into triples (g1,m1, t) ∈ Y, where t takes any interval in {[0, 1], [0, 2], [0, 6], [0, 7],
[0, 8], [0, 9], [1, 9]}. The intersection of intervals in this set is the original value itself,
i.e.m1(g1) = 1, a basic property of interordinal scaling. As a result, Table 5 illustrates
the whole scaled triadic context derived from the numerical dataset given in Table 1
using interordinal scaling. The very first cross (×) in this table (upper left) represents
the tuple (g2,m4, t1), meaning thatm4(g2) ∈ [0, 0].

We present now our first main result: there is a one-to-one correspondence
between (i) the set ofmaximal biclusters of similar values in a given numerical dataset
for any similarity parameter θ and (ii) the set of all triadic concepts in the triadic
context derived with interordinal scaling. Consider first the following definition and
notations.

Definition 12 (Standard order of interordinal scale attributes) The values of the
interordinal scale are intervals. Define the standard order on 2k− 1 attributes of the
interordinal scale based on k first natural numbers as follows: [1, 1], [1, 2], . . . , [1,k],
[2,k], . . . , [k, k]. Having the standard order on the attributes of the interordinal scale
one can think of attributes having numbers from 1 to 2k+ 1. Note the obvious main
property of the standard order on attributes of the interordinal scale: if an object has
two scale attributes with numbers r and s, r < s, then it has all scale attributes with
numbers in [r, s].

For a many-valued context (G,M,W, I), let the set W (|W| = q) be the set of nu-
merical values enumerated in the ascending order from 1 to q, and let g(m) be a map
taking attribute m to its value w ∈ W for object g. Let the numerical values from W
be interordinally scaled with the standard order on the scale attributes, so we can de-
note the scale attributes by m1, . . . ,mq, . . . ,m2q−1. Let B = {m1, . . . ,mq, . . .m2q−1}
and (G,M, B,Y) be the triadic context such that (g,m,b ) ∈ Y iff g(m) lies in the
interval given by the interordinal attribute b .

Proposition 1 (A,D) is a maximal bicluster of similar values (A ⊆ G, D ⊆ M) with
the values lying in the interval [t, t + θ ] for t ∈ N, θ ≥ 0 if f (A,D,U) is a triadic con-
cept of the context (G,M, B,Y) , where U = {t + θ, . . . q, . . . ,q+ t − 1}. Moreover,
every triadic concept of the interordinally scaled triadic context (G,M, B,Y) is of the
form (A,D,U), where A ⊆ G,D ⊆ M, andU = {t + θ, . . . q, . . . , q+ t − 1} for some
t ∈ N and θ ≥ 0.

Proof Let (A,D) be a maximal bicluster of similar values (A ⊆ G, D ⊆ M), then
the values of attributes of the bicluster are lying in the interval [t, t + θ ] for some
t ∈ N, θ ≥ 0, i.e. g(m) ∈ [t, t + θ ] for every g ∈ A, m ∈ D. Due to the standard
order on interordinal attributes, this implies that in the triadic context (G,M, B,Y)
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one has (g,m,b ) ∈ Y for all g ∈ A,m ∈ D and b ∈ {t + θ, . . . q, . . . ,q+ t − 1} and
there is a rectangular parallelepiped (A,D, {t + θ, . . . q, . . . ,q+ t − 1}) filled with
crosses in the triadic cross-table ofY, i.e. (A,D, {t + θ, . . . q, . . . , q+ t − 1} ⊆ Y. This
parallelepiped is inclusion-maximal, since otherwise this would mean that one can
add either another object, or another attribute, or another scale value to its respective
component. The possibility of adding another object or attribute would contradict
the fact that (A,D) is a maximal bicluster, the possibility of adding another scale
value would contradict the fact that the attribute values of the bicluster lie strictly in
the interval [t, t + θ ] . Thus, (A,D, {t + θ, . . . q, . . . , q+ t − 1}) is a triadic concept.

In the opposite direction, consider a triadic concept (A,D,V) in the interordinally
scaled three-dimensional context, the attributes of V being ordered in the standard
way. By the main property of the standard order on attributes of the interordinal
scale, this would mean that for any two values r and s of V, the set V also contains
all values in the interval [r, s]. Hence there are some t and q such that the values of V
lie in the interval [t, t + θ ] for all object-attribute pairs from A× D. This means that
(A,D) is a bicluster of similar values, which is maximal, since otherwise (A,D,V)

would not have been a triadic concept. ��
Example 4 ({g1, g2, g3}, {m1,m2,m3}, {t3, t4, t5, t6, t7, t8}) is a triadic concept cor-
responding to the maximal bicluster ({g1, g2, g3}, {m1,m2,m3}) with θ = 1 since
{t3, t4, t5, t6, t7, t8} is a modus characterizing interval [1, 2] of length 1.

4.2 Trilattice diagram

In their seminal paper on TCA, Lehman and Wille proposed a way to visualize
the ordered structure of triadic concepts [25]. This visualization possibility has not
attracted a lot of attention since, hence we propose to illustrate it with derived triadic
contexts from numerical data. Let us firstly recall notations of TCA: a triadic context
is denoted by K = (K1, K2,K3,Y), the set of all its triadic concepts by I(K) and its
corresponding triadic diagram by I(K).

Definition 13 (Quasi-order �i and equivalence relation ∼i on I(K)) Given two tri-
adic concepts (A1, A2, A3) and (B1, B2, B3), three quasi-order and three equivalence
are defined as follows, for i = 1, 2, 3

(A1, A2, A3) �i (B1, B2, B3) ⇐⇒ Ai ⊆ Bi, (1)

(A1, A2, A3) ∼i (B1, B2, B3) ⇐⇒ Ai = Bi. (2)

Definition 14 (Anti-ordinal dependencies) A triadic concept is uniquely determined
by two of its components since the three quasi-orders satisfy the anti-ordinal depen-
dencies: For {i, j,k} = {1, 2, 3}, (A1, A2, A3) �i (B1, B2, B3) and (A1, A2, A3) � j

(B1, B2, B3) imply (A1, A2, A3) �k (B1, B2, B3) for any two concepts (A1, A2, A3)

and (B1, B2, B3).

Definition 15 (Equivalence and factor sets) For i = 1, 2, 3, the equivalence class
of the relation ∼i which contains the concept (A1, A2, A3) is denoted by
[(A1, A2, A3)]i. �i induces an order ≤i on the factor set I(K)/ ∼i:

[(A1, A2, A3)]i ≤i [(B1, B2, B3)]i ⇐⇒ Ai ⊆ Bi.
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Accordingly, (I(K)/ ∼i,≤i) is the ordered set of all extents (i = 1), or intents (i = 2)
and modi (i = 3) of K.

Definition 16 (Triadic diagram) This relational structure I(K) can be understood as
two types of structures:

– The geometric structure: (I(K),∼1,∼2,∼3): It is represented as a partial 3-net,
i.e. a triangular pattern. The three equivalence relations are here represented
by 3 systems of parallel lines. For example, consider the equivalence relation on
concepts with i = 1: concepts of an equivalence class have same extent and are
depicted on the same line. As such, the classes of equivalence meet at most in
one element for a given concept.

– The ordered structures: (I(K)/ ∼i,≤i): Each of them is represented by a Hasse
diagram.

Figure 2 presents the trilattice obtained from our running example (i.e. Table 5).
For sake of readability, we highlight there only the biclusters that are maximal
for θ = 1. Taking the concept ({g4}, {m1, m5}, [6, 11]) from the Table 6, the three
(pairwise non parallel) lines, corresponding respectively to the equivalence class of
the extent {g4}, the intent {m1,m5} and the modus [6, 11], only meet in one point of

Fig. 2 Trilattice frommulti-valued context (Table 1) interordinally scaled to Table 5. Note, that only
biclusters maximal for θ = 1 are depicted. Consider the purple point that is the meet of the three
purple lines: it represents the concept ({g1, g2, g3}, {m1,m2,m3}, {[t3, t8]}), i.e. with values in [1, 2]
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Table 6 Triadic concepts with θ = 1

G ⊇ A – extent M ⊇ B – intent T ⊇ C – modus Interval over W

A = {g1} B = {m1,m2,m3,m4} C = [t3, t8] [1, 2]
A = {g1, g2} B = {m4} C = [t2, t7] [0, 1]
A = {g1, g2, g3} B = {m1,m2,m3} C = [t3, t8] [1, 2]
A = {g1, g2, g3, g4} B = {m3} C = [t3, t8] [1, 2]
A = {g1, g2, g3, g4} B = {m5} C = [t5, t10] [6, 7]
A = {g2} B = {m2,m3,m4} C = [t2, t7] [0, 1]
A = {g3, g4} B = {m4,m5} C = [t5, t10] [6, 7]
A = {g4} B = {m1,m2} C = [t7, t12] [8, 9]
A = {g4} B = {m1,m5} C = [t6, t11] [7, 8]

the triangular pattern which represents this concept. The three quasi-order structures
of extents, intents and modi, i.e. Hasse diagrams of all (I(K)/ ∼i,≤i), lie around the
trilattice.

4.3 Handling n-ary numerical dataset

A straightforward generalization of the presented approach lies in its potential
extension to n-ary numerical datasets. The basic idea is as follows. Consider a numer-
ical dataset with n dimensions, e.g. genes× biological situations× timestamps when
n = 3. Then, one can extract n-clusters of similar values by scaling the numerical
data into a n+ 1-dimensional binary dataset. So-called polyadic concepts [37] in the
binary dataset are here again in 1-to-1-correspondence with maximal n-clusters of
similar values of the numerical dataset. We present here theoretical aspects while
computing aspects can be regarded with the existing algorithmsData-Peeler [10].

Recall that the standard order on 2k− 1 attributes of the interordinal scale is as
follows: [v1, v1], [v1, v2], . . . , [v1, vk], [v2, vk] . . . , [vk, vk]. Having the standard order
on the attributes of the interordinal scale one can enumerate them from 1 to 2k+ 1.
Let (G1, . . . ,Gn,W, I) be an n-dimensional many-valued context, i.e., an n+ 1-
dimensional relation I ⊆ G1 × . . .×Gn ×W and W (|W| = q) be the set of numeri-
cal values enumerated in the ascending order from 1 to q, and let v(g1, . . . , gn) be a
map taking the tuple g1, . . . , gn to the valuew ∈ W. Let the numerical values fromW
be interordinally scaled with the standard order on the scale attributes, so we can de-
note the scale attributes by m1, . . . ,mq, . . . ,m2q−1. Let B = {m1, . . . ,mq, . . .m2q−1}
and Y ⊆ G1 × . . .× Gn × B be an n+ 1-ary relation such that (g1, . . . , gn,m) ∈ Y
iff the value w of the n-tuple g1, . . . , gn lies in the interval given by the interordinal
attribute m.

Proposition 2 (A1, . . . , An) is a maximal n-way cluster of similar values (Ai ⊆ Gi)
with the values lying in the interval [t, t + θ ] for t ∈ N, θ ≥ 0 if f (A1, . . . , An,U) is
an n+ 1-adic concept of the n+ 1-dimensional context (G1, . . . ,Gn,U,Y), where
U = {t + θ, . . . q, . . . ,q+ t − 1}. Moreover, every n+ 1-dimensional concept of the
interordinally scaled n+ 1-dimensional context (G1, . . . ,Gn,W,Y) is of the form
(A1, . . . , An,U), where Ai ⊆ Gi, and U = {t + θ, . . . q, . . . ,q+ t − 1} for some t ∈ N

and θ ≥ 0.

The proof is similar as in the triadic case and hence is omitted.



70 M. Kaytoue et al.

4.4 Remarks

We showed that extracting biclusters of similar values for any θ in a numerical
dataset can be achieved by (i) scaling the attribute value dimension and (ii) extracting
the triadic concepts in the resulting derived triadic context. The same applies when
considering n-ary numerical datasets.

On the one hand, triadic concepts (A, B,U) with the largest sets A, B or C
represent large biclusters of similar values. Indeed, the larger |A| and |B| the larger
the data covering of the corresponding bicluster. Furthermore, the larger |U |, the
more similar values for bicluster (A, B). Indeed, by the properties of interordinal
scaling, the more intervals in U , the smaller their interval intersection. Mining so-
called top-k frequent triadic concepts can accordingly be achieved with the existing
algorithmData-Peeler [10].

On the other hand, extracting maximal biclusters for all θ may be neither efficient
nor effective with large numerical data: their number tends to be very large and not
all biclusters are relevant for a given analysis. Furthermore, both size and density
of contexts derived with interordinal scaling are known to be problematic w.r.t
algorithmic scalability, see e.g. [20]. In existing methods of the literature, θ is set a
priori. We show now how to handle this case with slight modifications, this is our
second main result.

5 Extracting biclusters of similar values for a given θ

In this section, we present our second contribution. We consider the problem of
extracting maximal biclusters of similar values in TCA for a given θ only. It comes
with slight modifications of the methodology presented in the previous section, but
requires more algorithmic considerations: although all triadic concepts correspond
to biclusters of similar values with a new transformation procedure, it is not sure that
such concepts correspond to maximal biclusters. In this way, it is not possible to use
concepts extraction algorithms directly (or it would require post-processing which is
always a solution to avoid). Accordingly, a modified scaling procedure will lead us to
the design of the algorithm TriMax for a complete and correct extraction of maximal
biclusters for a given θ . Finally, we experiment with this new algorithm.

5.1 Scaling numerical data in a triadic context

Consider the previous scaling applied to a numerical dataset (G,M,W, I). It scales
W into a dimension T and all subsets of T characterize all intervals of values over
W. To get maximal biclusters for a given θ only, we should not consider all possible
intervals in W, but rather all intervals (i) having a range size that is less or equal
than θ to avoid biclusters with non similar values, and (ii) having a range size the
closest as possible to θ to avoid non-maximal biclusters. For example, if we set θ = 2,
it is probably not interesting to consider interval [0, 8] in the scale dimension since
8 − 0 > θ . Similarly, considering the interval [6, 6] may not be interesting as well,
since a bicluster with all its values equal to 6 may not be maximal. As introduced
in [17], the maximal intervals of similar values used for the scale are called blocks
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of tolerance over the set of numbers W with respect to the tolerance relation �θ .
We now recall basics on tolerance relations over a set of numbers. This allows us to
define a simpler scaling procedure. The resulting triadic context is then mined with
a new TCA algorithm called TriMax to extract maximal biclusters of similar values
for a given θ .

Blocks of tolerance over W are as maximal sets of pairwise similar values:

Definition 17 (Tolerance relation and blocks) A binary relation � is a tolerance if it
is reflexive, symmetric but not necessarily transitive. Given a setW, a subset V ⊆ W,
and a tolerance relation � over W, V is a block of tolerance if:

(i) ∀w1, w2 ∈ V, w1 � w2 (pairwise similarity)

(ii) ∀w1 �∈ V, ∃w2 ∈ V, w1 �� w2 (maximality).

It follows that �θ is a tolerance relation. From Table 1 we have W =
{0, 1, 2, 6, 7, 8, 9}. With θ = 2, one has 0 �2 2 but 2 ��2 6. Accordingly, one obtains
3 blocks of tolerance, namely the sets {0, 1, 2}, {6, 7, 8} and {7, 8, 9}. These three sets
can be renamed as the convex hull of their elements on N: respectively, [0, 2], [6, 8]
and [7, 9]: any number lying between the minimal and the maximal elements (w.r.t.
natural number ordering) of a block of tolerance is naturally similar to any other
element of the block. Then, to derive a triadic context from a numerical dataset, we
simply use tolerance blocks over W to define the scale dimension.

Definition 18 (TriMax scale relation) The scale relation is a binary relation J ⊆
W ×C, where C is the set of blocks of tolerance over W renamed as their convex
hulls. Then, (w, c) ∈ J iff w ∈ c.

Example 6 From Table 1 we have: C = {[0, 1], [1, 2], [6, 7], [7, 8], [8, 9]} with θ = 1,
and C = {[0, 2], [6, 8], [7, 9]} with θ = 2.

In this way, we can apply the same context derivation as in the previous section:
scaling is still based on intervals, but this time it uses tolerance blocks.

Definition 19 (TriMax triadic scaled context) Let Y ⊆ G× M× C be a ternary
relation. Then (g,m, c) ∈ Y iff (m(g), c) ∈ J, or simplym(g) ∈ c, where J is the scale
relation. (G,M,C,Y) is called the TriMax triadic scaled context.

Example 7 Table 7 is the TriMax triadic scaled context derived from the numerical
dataset lying in Table 1 with θ = 1.

Definition 20 (Dyadic context associated with a block of tolerance) Consider a
block of tolerance c ∈ C. The dyadic context associated with this block is given by
(G,M, Z ) where Z denotes the set of all (g,m) ∈ G× M such thatm(g) ∈ c.
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Table 7 Triadic scaled context using tolerance blocks over W and θ = 1 (empty columns are not
displayed)

[0, 1] [1, 2] [6, 7] [7, 8] [8, 9]
m1 m2 m3 m4 m1 m2 m3 m4 m4 m5 m1 m4 m5 m1 m2

g1 × × × × × × ×
g2 × × × × × × ×
g3 × × × × × × ×
g4 × × × × × × ×
In gray, the bicluster ({g1, g2, g3}, {m1,m2,m3}) with values in [1, 2] and maximal for θ = 1 corre-
sponds to a dyadic concept in the dyadic context labeled [1, 2]

Example 8 In Table 7, each dyadic context is labeled by its corresponding block of
tolerance for θ = 1.

Now, note that blocks of tolerance over W are totally ordered: let [v1, v2] and
[w1, w2] be two blocks of tolerance, one has [v1, v2] < [w1, w2] iff v1 < w1. Hence,
associated dyadic contexts are also totally ordered and we can use an indexing set to
label them (as done in the algorithm pseudo-code later).

We now present our next results: the scaled triadic context supports the extraction
of maximal biclusters of similar values for a given θ . In this case however, existing
algorithms of TCA cannot be applied directly. For example, in Table 7, the triadic
concept ({g3}, {m4}, {[6, 7], [7, 8]}) corresponds to a bicluster of similar values which
is not maximal. Hence we present hereafter a new TCA algorithm for this task, called
TriMax.

The basic idea of TriMax relies on the following facts. Firstly, since each dyadic
context corresponds to a block of tolerance, we do not need to compute intersections
of contexts, such as classically done in TCA. Hence each dyadic context is processed
separately. Secondly, a dyadic concept of a dyadic context necessarily represents
a bicluster of similar values, but we cannot be sure it is maximal (see previous
example). Hence, we need to check if a concept is still a concept in other dyadic
contexts, corresponding to other classes of tolerance. This is made precise with the
following proposition.

Proposition 3 Let (A, B,U) be a triadic concept from TriMax triadic scaled context
(G,M,C,Y), such that U is the outer closure of a singleton {c} ⊆ C. If |U | = 1,
(A, B) is a maximal bicluster of similar values. Otherwise, (A, B) is a maximal
bicluster of similar values if f there is no ∈ [min(U);max(U)], y < c such that (A, B) �=
�

′
y(�y((A, B))), where �

′
y(·) and �y(·) correspond to inner derivation operators

associated with yth dyadic context.

Proof When |U | = 1, (A, B) is a dyadic concept only in one dyadic context cor-
responding to a block of tolerance. By properties of tolerance blocks, (A, B) is a
maximal bicluster. If |U | �= 1, (A, B) is a dyadic concept in |U | dyadic contexts. Since
the tolerance block set is totally ordered, it directly implies that modus U is the in-
terval [min(U);max(U)]. Hence, if there is y ∈ [min(U);max(U)] such that (A, B) =
�

′
y(�y((A, B))), then (A, B) is not a maximal bicluster of similar values. ��
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5.2 The TriMax algorithm

TriMax starts with scaling initial numerical data into several dyadic contexts, each
one standing for a block of tolerance over W with given θ . The set of all dyadic
contexts forms accordingly a triadic context. Then, each dyadic context is mined with
any FCA algorithm (or closed itemset mining algorithm), and all formal concepts are
extracted. For a given concept (A, B), we compute outer derivation �

′
((A, B)), i.e.

to obtain the set of dyadic contexts labels in which the current dyadic concept holds.
If this set is a singleton, this means that (A, B) is a concept for the current block of
tolerance only, i.e. it is a maximal bicluster of similar values, and it has been, or will
never be, generated twice. Otherwise, (A, B) is a concept in other contexts, and can
be generated accordingly several times (as much as the number of contexts in which it
holds). Then, we only consider (A, B) if we are sure it is the last time it is computed.
Finally, we need to check if current concept represents a maximal bicluster, i.e. there
should not exist a context labeled by an element of the modus where (A, B) is not a
dyadic concept.

Proposition 4 TriMax outputs a (i) complete, (ii) correct and (iii) non redundant
collection of all maximal biclusters of similar values for a given numerical dataset and
similarity parameter θ .

Proof (i) and (ii) follow directly from Proposition 3. Statement (iii) is ensured by the
second if condition of the algorithm: a dyadic concept (or equivalently bicluster) is
considered iff it has been extracted in the last dyadic context in which it holds. ��

5.3 Experimenting with TriMax

In this section, we present experiments carried out with the algorithm TriMax and
highlight various aspects of its practical complexity.
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Data We explore a gene expression dataset of the speciesLaccaria bicolor available
at NCBI.2 More details on this dataset can be found in [20]. This gene expression
dataset monitors the behaviour of 11,930 genes in 12 biological situations, reflecting
various stages of Laccaria bicolor biological cycle. Attribute values in W vary
between 0 and 60,000.

TriMax implementation TriMax is written in C++. It uses the boost library 1.42 for
data structures and InClose,3 an implementation of the algorithmCloseByOne [23]
for dyadic concept extraction. At each iteration of the main loop, i.e. each tolerance
block, the current scaled dyadic context is produced: We do not generate the whole
triadic context which cannot fit into memory for large databases. It turns out that
the modus computation for a given dyadic concept requires to compute scaling “on
the fly”, i.e. when computing the set of dyadic contexts in which a current concept
holds. The experiments were carried out on an Intel CPU 2.54 Ghz machine with 8
GB RAM running under Ubuntu 11.04.

Experiment settings The goal of the present experiments is not to give a qualitative
evaluation of the present approach (say biological interpretation), but rather a
quantitative evaluation in terms of computational efficiency. Indeed, the present
work aims at showing how an existing type of biclusters can be mined with Triadic
Concept Analysis. For a qualitative evaluation, the reader may refer e.g. to [6, 20].

Accordingly, we designed the following experiments to monitor various aspects of
the TriMax algorithm. For most of the experiments, the dataset used is composed of
an increasing number of objects and all attributes. The objects are chosen randomly
once and for all so that the different experiment results can be compared. We also
vary the parameter θ in the same way across all experiments. Then, we monitor the
following aspects, as presented in Fig. 3:

i Number of maximal biclusters of similar values
ii Execution time (in seconds)
iii Number of tolerance blocks
iv Density of the triadic context, where density is defined as d(G,M,C,Y) =

|Y|/(|G| × |M| × |C|). This information is important, since contexts with high
density are known to be hard to process with FCA algorithms [24].

v Comparison between the number of non-maximal biclusters produced by Tri-
Max (i.e. dyadic concepts that do not correspond to maximal biclusters) with the
number of maximal biclusters.

vi Execution time profiling of the main procedures of TriMax. This is achieved
with the toolGNUGProf and gives us which parts of the algorithm are the most
time consuming.

Experiment results Figure 3 presents the results of our experiments with different
settings. In these settings, we vary the number of objects |G| and the parameter θ . A
first observation arises from graph (i): the number of biclusters is the highest when
θ � 30,000. A first explanation is that 30,000 is the half of the maximal value of W

2http://www.ncbi.nlm.nih.gov/geo/ as series GSE9784.
3http://sourceforge.net/projects/inclose/

http://www.ncbi.nlm.nih.gov/geo/
http://sourceforge.net/projects/inclose/
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Fig. 3 Monitoring with different settings (i) the number of maximal biclusters, (ii) the execution
times of TriMax, (iii) the number of tolerance blocks, (iv) the derived triadic context density, (v)
the number of non-maximal biclusters generated as dyadic-concepts w.r.t. the number of maximal
biclusters, and (vi) repartition of execution time in the TriMax algorithm

and almost all multiples of 100 in [0; 60,000] belong to W. In the figure (ii), execution
time has the same behavior as in the figure (i). This fact can be understood by paying
attention to the next figures (iii) and (iv). In (iii) the number of tolerance blocks
is monitored. The maximal number is reached when θ = 0, i.e. |C| = |W|. When
θ = max(W), we have |C| = 1. Now we observe in (iv) that the density follows a
reverse behavior: When θ = 0, the density tends towards 0 %; when θ = max(W),
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then density equals exactly 1 %. Combining both graph (iii) and (iv), the worst cases
happen when both density and tolerance block count are high.

Another observation, which explains also the execution times, arises from graph
(v). Here the number of maximal biclusters and the number of non-maximal bi-
clusters generated as dyadic concepts are compared. Here again, the worst case is
reached when θ � 30,000. Looking at figure (vi), we learn that this is however not
the major problem. The mostly consuming procedure of TriMax is the computation
of the modus of a dyadic concept. The explanation is that we compute modus with
“on the fly scaling”.

Therefore, the bottleneck of our algorithm appears to be the modus computation.
In practical applications however, the analyst is not interested in all biclusters of
similar values. Some constraints are generally defined, such as a minimal (resp.
maximal) number of objects (resp. attributes) in a bicluster (A, B), or a minimal
area |A| × |B|, etc. Interestingly, most of those constraints can be evaluated on a
generated dyadic concept. Therefore, before computing the modus of such concept,
we can check such properties and discard the concept if it does not respect the
constraints. Although not reflected in this paper, we tested how adding minimal
(resp. maximal) size constraints on a bicluster affects both the number of biclusters
and the execution times. The results are very interesting: for example with θ =
33,000, |G| = 500, and minimal (resp. maximal) size for |A| set to 10 (resp. 40),
TriMax produces only 5,332maximal biclusters in 2.1 s compared to 104,226maximal
biclusters extracted in 16.130 s without any constraint.

Finally, the most interesting aspect of TriMax is the possibility of its distributed
execution. Indeed, each iteration, i.e. for each block of tolerance, can be achieved
independently from the others. Furthermore, the core of TriMax consisting in ex-
tracting dyadic contexts can also be distributed, see e.g. [22]. A deeper investigation
remains to be done in this case. Note that although the method description involves
W as a set of natural numbers, TriMax can directly handle numerical data with real
(floating point) numbers (since W is a finite set).

Comparison with existing methods Two methods in the literature also consider the
problem of extracting all maximal biclusters of similar values from a numerical
dataset. The first method is called Numerical Biset Miner (NBS-Miner [6]). The
second method is based on interval pattern structures (IPS [19]). We compared the
execution times of NBS-Miner, IPS and TriMax. Algorithms have been imple-
mented in C++. Figure 4 display three experiments showing that NBS-Miner is not

Fig. 4 Comparing performance of TriMax, NBS and the IPS approach (ms)
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scalable compared to IPS and TriMax. Although TriMax outperforms IPS, a deeper
investigation is required: the main problem with IPS is to find an efficient algorithm
able to compute tolerance blocks over a set of intervals. Other experiments show the
same behavior.

6 Conclusion

We addressed the problem of biclustering numerical data with Formal Concept
Analysis. So-called (maximal) biclusters of similar values can be characterized and
extracted with Triadic Concept Analysis, which turns out to be a novel mathematical
framework for this task. We have defined a scaling procedure turning original
numerical data into triadic contexts from which biclusters can be extracted as triadic
concepts with existing algorithms. This approach allows a correct, complete and non-
redundant extraction of all maximal biclusters, for any similarity parameter θ and
can be extended to n-ary numerical datasets while their computation can be directly
distributed. The interpretation of triadic concepts is powerful: both extent and intent
allow one to characterize a bicluster (i.e. the rectangle), while the modus gives the
range of values of the biclusters, and for which θ is the bicluster maximal. Moreover,
the larger the modus, the more similar the values within a current bicluster. This
fact gives a particular semantics to the notion of support as defined in itemset-
mining [3]. We also adapted the TCA machinery with algorithm TriMax to extract
maximal biclusters for a user-defined threshold θ . It appears that TriMax is a fully
customizable algorithm: any concept extraction algorithm can be used as a core
module (along with several constraints on produced dyadic concepts), while its
distributed computation is direct.

Perspectives of further research are numerous. Firstly, a deeper algorithmic study
has to be carried out: Could we avoid discretization and apply TCA directly on
the numerical data as it is done with interval pattern structures [20]? Is it more
efficient? Secondly, consider constraint-based itemset-mining (e.g. [34]). The goal
is to extract only patterns that respect a given predicate, e.g. cardinality of the
extent should be greater than a given minimal support. Concerning triadic concepts
(and even polyadic concepts), several constraints can be handled with the algorithm
Data-Peeler [10]. An interesting investigation is to list all additional constraints that
could be handled easily in our framework. Thanks to the genericity, i.e. using FCA
and existing algorithms, many of existing constraints can be handled directly: for
exampleData-Peeler can be used as a core module of TriMax. Finally, one should
remark that we focused our study on a particular type of biclusters. Accordingly,
can we handle other types of maximal biclusters with TCA? If so, what would be
the corresponding scaling? Can we characterize properties that a bicluster definition
should follow so that TCA can be applied?
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