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ABSTRACT: This study is dedicated to the introduction of a novel
method that automatically extracts potential structural alerts from a data set
of molecules. These triggering structures can be further used for knowledge
discovery and classification purposes. Computation of the structural alerts
results from an implementation of a sophisticated workflow that integrates
a graph mining tool guided by growth rate and stability. The growth rate is
a well-established measurement of contrast between classes. Moreover, the
extracted patterns correspond to formal concepts; the most robust patterns,
named the stable emerging patterns (SEPs), can then be identified thanks
to their stability, a new notion originating from the domain of formal
concept analysis. All of these elements are explained in the paper from the
point of view of computation. The method was applied to a molecular data
set on mutagenicity. The experimental results demonstrate its efficiency: it
automatically outputs a manageable number of structural patterns that are
strongly related to mutagenicity. Moreover, a part of the resulting
structures corresponds to already known structural alerts. Finally, an in-
depth chemical analysis relying on these structures demonstrates how the
method can initiate promising processes of chemical knowledge discovery.

■ INTRODUCTION

In the pharmaceutical industry, it is widely recognized that early
safety evaluation of candidate molecules is needed before
significant investments of time and resources are made.1,2 To
this aim, the notion of predictive toxicology, which includes the
application of computer technologies to detect relationships
that connect chemical structures and toxicological activities in
large biological and chemical data sets, is very appealing. The
advantages of in silico techniques in comparison with in vitro
and in vivo techniques can be summarized by their higher
throughput, their cost effectiveness, and their potential to
reduce the use of animals. In a regulatory framework, the use of
toxicity prediction tools is encouraged to improve prioritization
of data requirements and risk assessment not only for
pharmaceuticals3,4 but also for other chemical products such
as cosmetics and agrochemicals.5,6 In silico prediction methods
can roughly be classified into two categories: knowledge-based
expert systems and data-driven models. On the one hand,

knowledge-based expert systems such as Derek Nexus,7,8

HazardExpert,9 and OncoLogic10,11 do not discover new
associations between chemicals and toxicity but rather formalize
the knowledge of human experts and the scientific literature.
On the other hand, data-driven models such as MultiCASE,12

Topkat,13 LAZAR,14 and PASS15 analyze existing data, identify
chemical features that are relevant for the observed
toxicological end points, and automatically build statistical
models.
The definition of structural alerts corresponds to one of the

most interesting approaches of predictive toxicology since it
defines the key features of a molecule that are required to
interact with a biological system and initiate a toxicology
pathway. Its main advantage is the identification of chemicals
with a common mechanism of action. The set of structural
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alerts developed by Ashby and Tennant16 is a well-known
example of such associations. This set defines structural alerts
for DNA reactivity based on the analysis of in vitro
mutagenicity data and in vivo carcinogenicity data. Other
researchers have greatly extended this set of alerts, and one of
the most advanced lists for evaluating the mutagenic and
carcinogenic potential of chemicals to date has been proposed
by Benigni and Bossa.17 This list has been implemented as a set
of rules in knowledge-based expert systems such as Toxtree18

and the OECD QSAR Toolbox.19 However, some limitations
have been reported in the literature:20,21 (i) updating the
knowledge base is a very time-consuming process since it
requires strong investment of domain experts and a detailed
analysis of the scientific literature; (ii) the expert opinion can
sometimes be prone to subjectivity, leading to inaccuracies; and
(iii) a negative response cannot be interpreted as a lack of
toxicity but simply as a lack of information with respect to the
molecule of interest.
The evolution of artificial intelligence and data mining tools

should answer some of the limitations mentioned above,
particularly the time and effort needed to identify new
structural alerts, sometimes beyond the limits of human
perception. The calculation of the frequency of a chemical
substructure in a data set is often at the core of the process for
the definition of its toxicological relevance. The rationale for
using a frequency constraint is that it is unlikely to generalize
on a substructure that has been observed on a few chemicals.
However, algorithms that enumerate frequent substructures
from a set of molecules, such as Gaston22 and gSpan,23 often
lead to the generation of too many such substructures.
To limit the number of generated substructures, methods for

finding representative and significant structural patterns have
been developed in recent years. For example, from a
mutagenicity data set, Kazius et al.24 determined the statistical
association of each proposed frequent substructure with
mutagenicity, expressed as the p value resulting from a
statistical test. Even though it relies on manual annotations,
this work has enabled the development of 29 approved
toxicophores. Recently, Ahlberg et al.25 proposed a framework
that automatically derives potential structural alerts; it also
relies on the p value of a statistical test to select the significant
substructures. Even though the computation does not
exhaustively enumerate all of the possible substructures, it
constitutes a fast and automated way to derive toxicophores.
These two works do not directly calculate significant molecular
substructures: they compute significant atom signatures26,27

from which the significant substructures are derived.
Helma et al.28 used MOLFEA, a molecular feature miner, to

discover linear molecular fragments (chains) that occur with a
higher frequency in mutagenic compounds than elsewhere.
MOLFEA uses a levelwise algorithm29 enabling the extraction
of linear substructures that are frequent in the set of mutagens
but infrequent outside of it. However, the restriction to linear
substructures disables the direct extraction of fragments
containing a branching point or a ring. This technical limitation
has been overtaken thanks to the design of general frequent
subgraph mining algorithms such as Gaston22 and gSpan.23

Kazius et al.30 applied this methodological advance to extract
fragments; their work led to the discovery of six new structural
alerts.
Emerging pattern mining is a contrast data mining

technique31 introduced by Dong and Li.32 The emerging
constraint captures characteristics that differentiate between

two classes of data and was first applied in chemoinformatics by
Auer and Bajorath in 2006.33 They introduced the notion of
emerging chemical patterns (ECPs) as a novel approach to
molecular classification. To describe the molecules, they did not
use molecular graphs but instead employed a set of
physicochemical and molecular properties. The jumping
emerging patterns (JEPs) correspond to a subset of the emerging
patterns: a JEP denominates a pattern that is sufficiently
present in one class and absent from the other. Closed JEPs,
called JSM hypotheses, were used in predictive toxicology by
Blinova et al.:34 an itemset representation was used, with items
staying for particular molecular fragments.
Recently, Sherhod and co-workers35,36 applied the notion of

emerging patterns to identify structural features contrasting
mutagenic with nonmutagenic compounds. An emerging
pattern here corresponds to a conjunction of structural features,
a structural feature being either a functional group, a ring
fragment, or an atom pair.37 The functional groups and ring
fragments are automatically computed from a molecular data
set by keeping only the most meaningful parts of the molecules.
The method has also been successfully used to investigate
clusters of mutagenic compounds and to implement new
structural alerts in the knowledge base of the Derek Nexus
expert system.38

The current work introduces a method that computes the
conjunctions of molecular fragments whose frequencies of
occurrence in a data set are sufficiently discriminative between
different subgroups of molecules (e.g., mutagens and non-
mutagens) to be of interest. The method operates directly from
the molecular graphs: it automatically enumerates the
molecular fragments that are sufficiently frequent to be
considered.
In our previous works,39−41 we introduced a graph-based

mining method for the extraction of emerging patterns from a
data set of molecules. This method necessitates two
combinatorial enumerations. First, the enumeration of the
molecular fragments allows the identification of the frequent
fragments that will be used as structural features. Then the
enumeration of conjunctions of frequent fragments enables the
discovery of conjunctions of molecular fragments whose
occurrences are correlated to a subgroup of molecules, such
as mutagens or nonmutagens.
In this paper, we rely on our original calculation of emerging

graph patterns to mine a mutagenicity data set collected by
Hansen et al.42 The novelty of this work relies on the use of
closed patterns: we focus on the extraction of closed patterns
that are in a one-to-one correspondence to the related formal
concepts. This relation gives a structure to the closed emerging
patterns we find. Thanks to this structure and to formal concept
analysis,43−45 we are able to select the most consistent
emerging patterns, named stable emerging patterns (SEPs).
Moreover, we also provide an interactive visualization tool to
easily explore and evaluate the structural alert candidates.
The computational method is detailed in Materials and

Methods. The main results of an expert analysis demonstrate
the practical interest of the computational method: the
extracted structural patterns constitute an efficient basis for a
process of chemical knowledge discovery.

■ MATERIALS AND METHODS
Notions. Molecular Patterns. As an input, we consider a

data set of molecules in which the structure of each molecule is
given by its usual graph model. A molecular graph consists of a
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set of vertices, the atoms, that interact by means of edges, the
chemical bonds. A vertex of a molecular graph is labeled with
the atomic number it represents, while the label of an edge
indicates the bond order. A molecular f ragment represents a
connected part of a molecule. A fragment occurs within a
molecule if there is an embedding of the fragment in the
molecule that simultaneously satisfies the relational structure of
the fragment (the presence and the absence of every edge), and
the labeling schemes of the edges and atoms. The extent of a
molecular fragment denotes the set of molecules of the input
data set in which the molecular fragment occurs. Given a set of
molecules , a fragment f is closed in if there is no fragment
that contains f and occurs in every molecule in the extent of f,
i.e., one cannot extend the graph of a closed fragment while
preserving its extent in .
Throughout the current study, we aim to discover molecular

patterns that correspond to potential structural alerts. A
molecular pattern is a set of molecular fragments; the length
of a molecular pattern designates the number of fragments it
contains. A molecular pattern occurs in a molecule if each of its
fragments occurs in the molecule; the extent of a molecular
pattern denotes the set of molecules of the input data set in
which the molecular pattern occurs. The f requency of a pattern
in a chemical data set quantifies the relative number of
molecules in the data set in which the pattern occurs.
Given two different molecular patterns p and q, p is included

in q if each fragment of p is contained in a fragment of q. Here
we denote the inclusion of p in q as p ⊂ q. The inclusion
relationship provides a partial order between the molecular
patterns and turns the set of molecular patterns into a partially
ordered set. When p ⊂ q, q covers p if there is no molecular
pattern r such that p ⊂ r ⊂ q.46 A finite partially ordered set is
usually depicted by a Hasse diagram, in which every pattern is
associated with its own region and every covering pair is joined
by a line segment.47 Figure 1 shows a Hasse diagram for a

partially ordered set of six molecular patterns. Each pattern is
depicted as a rectangle, and the covering relation is indicated in
a top-down manner: a molecular pattern q is linked to a
molecular pattern p that lies under it if q covers p. For instance,
the molecular pattern { C(O)O and C−C } covers the
molecular pattern at the bottom left ({CO and CO}). From
a Hasse diagram, it is easy to tell whether a pattern is included
in another: p ⊂ q if there is a sequence of connected line
segments moving upward from p to q.

Closed Molecular Patterns. Given a set of molecules , a
molecular pattern p is closed if there is no other molecular
pattern that contains p and occurs in the same molecules as p,
i.e., one cannot add any molecular fragment to p or extend an
existing fragment of p while preserving all of its occurrences
within the molecules of . As they lead to the chemically most
interpretable information, we focus here on closed molecular
patterns.
The following property stems from the definition of a closed

molecular pattern: as soon as a molecular fragment f is an
element of a closed molecular pattern p, any molecular
fragment contained in f is also an element of p. Thus, the
fact that a fragment f belongs to a pattern p loses its significance
if f is contained in another fragment of p. Consequently, any
fragment of a closed pattern p is pruned if it is a subfragment of
another fragment of p; the resulting pattern is named a pruned
closed molecular pattern. There is a one-to-one mapping
between the pruned closed molecular patterns and the initial
closed molecular patterns, and moreover, this correspondence
preserves the extent.40

In this paper, we focus on computing and assessing the
molecular patterns that are pruned closed molecular patterns
(closed with respect to the considered learning molecular data
set).41 As demonstrated by Kuznetsov and Samokhin,48 any
element of a pruned closed pattern is necessarily a closed
fragment. For the sake of simplicity, in the rest of this text, a
pruned closed molecular pattern is called a molecular pattern.

Emerging Molecular Patterns. Since the entire set of
molecular fragments is very large, it leads to a huge number of
molecular patterns. To select meaningful patterns, one may
consider a pattern only if it occurs sufficiently often in the
molecular data set. However, a combination of frequent
fragments does not necessarily lead to a relevant molecular
pattern. For example, a molecular pattern made with the basic
molecular fragment C−C does not carry alone any significance
for studying important properties such as mutagenicity or acute
toxicity.
To automatically discover structural alerts, it is highly

appropriate to look for structural changes between different
groups of molecules (e.g., between mutagens and non-
mutagens). In particular, given a set of molecules, a molecular
pattern that sufficiently occurs within the molecules of the
given set and whose occurrences are significantly more frequent
in the mutagens than in the nonmutagens stands as a potential
structural alert related to the mutagenicity. The notion of a
f requent emerging molecular pattern embodies this natural idea
by using the growth rate measure. When a chemical data set is
partitioned between targeted molecules and nontargeted ones
(also named “classes”), the growth rate of a pattern p, denoted
as ρ(p), is defined as the ratio of the frequency of p in the
targeted molecules to its frequency outside the targeted
molecules.32 Following our example, the growth rate of a
molecular pattern is obtained by dividing its frequency in the
mutagens by its frequency in the nonmutagens. A JEP is a
pattern that has the noticeable property of occurring solely in
molecules of the targeted class. By default, the growth rate of a
JEP is denoted by the infinity symbol (∞). A frequent
emerging molecular pattern denotes a molecular pattern that
fulfills two constraints: a frequency sufficiently high to warrant
further inductive usage and a growth rate sufficiently high to
indicate a potential structural alert. Thus, being a frequent
emerging molecular pattern depends on the settings of both the

Figure 1. Example of a Hasse diagram for drawing the inclusions
between molecular patterns.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500611v
J. Chem. Inf. Model. 2015, 55, 925−940

927

http://dx.doi.org/10.1021/ci500611v


minimum frequency threshold and the minimum growth rate
threshold.
Illustration. Figure 2 illustrates the notion of a frequent

emerging molecular pattern. As an input, this example
considers the learning data set of four molecules depicted at
the left of Figure 2, a minimum frequency threshold set to 50%,
and a minimum growth rate threshold set to 2.
Since any frequent emerging molecular pattern is made up of

frequent molecular fragments only,40 it is sufficient enough to
describe the molecules using the frequent fragments they
contain. In the example, with the minimum frequency threshold
set to 50%, a fragment that occurs twice or more among the
four molecules is a frequent fragment; this results in four
frequent fragments. These frequent fragments constitute the set
of features used in an intermediate description of the
molecules: every molecule of the data set is described by the
frequent fragments it contains. From this binary description,
one is able to generate every pattern that is frequent enough
and is a closed pattern. In order to retain only meaningful
pieces of information, these patterns are pruned: any fragment
is removed from a pattern as soon as it is contained in another
fragment of the pattern. In the example, the pruning step leads
to the removal of the phenyl group from the third pattern and
the removal of the nitro fragment from the fourth pattern.
In the example, with the minimum growth rate threshold set

to 2, a frequent pattern that is at least twice as frequent among
the mutagens as among the nonmutagens is an emerging
pattern. Among the four frequent patterns, three are considered
to be frequent emerging molecular patterns because their
growth rates (denoted by ρ) exceed 2: each represents a
conjunction of fragments that is frequent enough and whose
occurrences in the learning set are discriminative enough to be
of interest.
The following remark throws more light on the meaning of

the growth rate: the growth rate of a pattern is directly related
to the confidence of an association rule.49 Let p be a pattern
whose occurrences on a learning set indicate a relation to
mutagenicity through a growth rate with the value ρ(p). When
we consider the association rule “p → mutagenicity”, which

states that “an occurrence of p implies mutagenicity”, the
conf idence of this association rule corresponds to the condi-
tional probability of being a mutagen among the molecules that
contain the pattern p: the confidence of an association rule
quantifies the validity of the related implication. The rule “p →
mutagenicity” has a confidence c (measured on the learning
set) that is related to ρ(p) as follows:

ρ
ρ

=
+

−

+

c
p

p

( )

( ) N
N (1)

where N− and N+ denote the numbers of nonmutagens and
mutagens, respectively, in the learning set. As an illustration, if
we consider the data set used in this article (detailed in Data
Sets), the ratio of nonmutagens to mutagens is 0.89 in the
learning set. Thus, a pattern whose growth rate is equal to 10 is
associated with mutagenicity through an association rule whose
confidence is 10/(10 + 0.89) = 0.91. In other words, when the
association rule “p → mutagenicity” applies in the learning set,
it applies correctly in 91% of the cases.

Stable Emerging Patterns. The number of frequent
emerging patterns is usually very high, and many of them are
not significant and may result from artifacts of the data set.
How can we select the most relevant patterns? In data mining
there are a large number of measures for pattern ranking. One
of them is stability, which originates from formal concept
analysis.43−45 The stability of a pattern p measures the relative
number of subsets of the extent of p (i.e., subsets of molecules
where p occurs) such that p is closed in these subsets.
Intuitively, the stability of a pattern quantifies the degree to
which a pattern depends on its extent.
Kuznetsov and co-workers43,44,50 have shown that stability

corresponds to the probability that pattern p is preserved if an
arbitrary subset of molecules is removed from the data set. This
gives us an intuition why stability is a useful measure for pattern
selection. In fact, any pattern that we are going to find should
be independent of any particular data set, and stability measures
the extent to which the pattern is independent of the data set
with respect to deletion of molecules.

Figure 2. Illustration of going from a set of molecules to emerging pruned closed patterns.
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Let us consider Figure 2. In this example, the phenyl group
alone is a molecular pattern. To calculate the stability of this
molecular pattern, one can reason as follows. From the initial
data set of four molecules, 16 different subsets can be
generated, including the empty set and the whole initial set.
Among these 16 subsets, the phenyl group is considered as a
molecular pattern if the subset fulfills two conditions. First, the
phenyl group has to be considered as a fragment: it has to
appear in at least one molecule of the subset. This condition is
not fulfilled by two subsets: the empty set and the singleton
subset with the second molecule alone. Second, the first
molecule and the fourth molecule must be elements of the
subset, as otherwise the phenyl group is not closed anymore.
Indeed, without the fourth molecule in a subset, the closed
molecular fragment should be a phenyl group associated by a
single bond to an aromatic carbon and not a phenyl group
alone. Similarly, without the first molecule in a subset, the
(closed) pattern should be a phenyl group together with the
fragment cN(O)O. This second condition is fulfilled by four
subsets. Thus, since the phenyl group is considered as a
molecular pattern in four subsets generated from the initial data
set, its stability is equal to 4/16 = 0.25.
Computational Method. This section details the calcu-

lation of the stable emerging patterns from a set of molecules
partitioned into two subsets (e.g., mutagens and nonmutagens).
A workflow overview of the method is provided in Figure 3.
The method is a straight extension of the work introduced by
Poezevara et al.40 It relies on three main steps: the calculation
of the closed frequent fragments, then the calculation of the
frequent emerging pruned closed patterns, and finally the
selection of the most stable emerging patterns.
Calculation of the Closed Frequent Fragments. First, the

frequent molecular fragments are calculated by mining the
training set of molecules provided as the input; the operation
relies on a minimum frequency threshold. Gaston22 is used to
mine the chemical graphs. The efficiency of Gaston mainly
relies on the adoption of the quick-start principle (see ref 22 for
more details).

In our calculation, a f ragment never contains an incomplete
chemical ring. To exclude molecular fragments containing
incomplete chemical rings, we use an approach similar to that
of Borgelt.51 As a pretreatment, any edge of a molecule that is
included in at least one ring is tagged as “in a ring”. As a filter,
every frequent fragment output by Gaston is tested: if the
fragment has at least one edge that is not in a ring but is tagged
as “in a ring”, the fragment is discarded from the list of the
frequent molecular fragments.
The last operation in this step selects only frequent

molecular fragments that are closed fragments. The fragments
are grouped according to their extents, and then a fragment is
kept only if it is not included in another fragment that shares
the same extent. Any remaining fragment is a (closed) frequent
molecular fragment. The inclusion test is handled using the
Boost Graph Library (http://www.boost.org/doc/libs/1_55_
0/libs/graph/), which is a refactoring of the work of Cordella et
al.52

Calculation of the Emerging Pruned Closed Patterns. First,
the frequent molecular fragments resulting from the previous
step are used to describe the molecules of the training set: every
molecule of the training set is described in terms of the set of
frequent molecular fragments it contains. From this description,
the closed molecular patterns are calculated using LCM
(http://research.nii.ac.jp/~uno/codes.htm), which is an effi-
cient implementation of the CbO algorithm.53 It uses the
pref ix-preserving extension, which is an extension of a closed
pattern to another closed pattern. This technique allows the
algorithm to output closed patterns only. Every closed pattern
is pruned: any of its molecular fragments is removed as soon as
it is contained in another molecular fragment of this pattern.
These pruned patterns are kept only if their growth rates
exceed a threshold. This calculation identifies all of the
emerging pruned closed patterns.

Selection of the Most Stable Molecular Patterns. The final
step of the process consists of selecting the molecular patterns
that are stable enough on the basis of a stability threshold.
However, as the stability of a pattern (denoted as stab(p)) is

Figure 3. Workflow overview of the computation of the stable emerging patterns (SEPs).
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hard to compute,43−45 we use the estimate of stability
computed from the difference in the extents for different
patterns.54

Given two closed patterns p and q such that p is included in
q, the dif ference in the extents of p and q, denoted as d(p, q),
corresponds to the difference in the cardinalities of the extents
of p and q: d(p, q) = |extent(p) − extent(q)|. In order to bound
the stability of a pattern p, the estimate uses the differences in
the extents of p and qi for every pattern qi that covers p, i.e.,
{d(p, qi): qi covers p}:

∑− ≤ ≤ −− −p1 2 stab( ) 1 max (2 )
q p

d p q

q p

d p q

covers

( , )

covers

( , )

i

i

i

i

(2)

As we work with closed patterns, any pattern qi that covers p
has an extent smaller than the extent of p. Equation 2 relies on
the following fact: for any pattern qi that covers p, if qi is a
closed pattern, p is not closed in extent(qi). Thus, p is not
closed in any subset of extent(qi) as soon as qi covers p. If we
exclude the extent of one pattern qi that covers p, we have the
upper bound of stab(p) given in eq 2. If we exclude the extents
of all of the patterns covering p, since some of the subsets of the
extent of p may be excluded several times, we have the lower
bound of stab(p) given in eq 2.
Let us return to the example in Figure 2 and to the phenyl

group as a pattern. The extent of the phenyl group contains
three molecules. There are only two patterns that cover the
phenyl group, and these two patterns have extents of size 2 (see
Figure 4). By applying the latter formula, one obtains 1 − 2·2−1

≤ stab(phenyl) ≤ 1 − 2−1, i.e., the stability of the phenyl group
lies between 0 and 0.5.

Data Sets. The Hansen Data Set. The mining process has
been applied to a publicly available benchmark data set
reported by Hansen et al.42 The data set consists of 6512
compounds resulting from the compilation of Ames muta-
genicity data described in the CCRIS,55 Helma et al.,28 Kazuis
et al.,24 Feng et al.,56 VITIC,57 and GENE-TOX databases.58

To be classified as Ames-positive (i.e., a mutagen), a compound
had to significantly induce a revertant colony growth in at least
one of the strains of Salmonella typhimurium.59 Even though the
data set was already pretreated to remove duplicate structures
and inorganic molecules, we cleaned the chemical data using
Pipeline pilot (Accelrys Inc., San Diego, CA, USA) and
ChemAxon (Chemaxon Ltd., Budapest, Hungary) components.
The additional curation steps consisted of normalization of
specific chemotypes (e.g., nitro group, organophosphate

moiety, etc.), conversion of the structures to their aromatic
form, and addition of hydrogens on the heteroatoms. This
procedure resulted in a well-balanced data set containing 3503
mutagenic and 3009 nonmutagenic compounds.
The study of Hansen et al.42 used a particular fivefold cross-

validation scheme. The authors of the present paper have
partitioned the data set into six parts. The first part gathers all
of the compounds of the data set that are verifiable according to
Derek Nexus7,8 or MultiCASE;12 the leftover compounds are
distributed into the five other parts (with the same ratio of
mutagens and nonmutagens). Within each of the five folds of
cross-validation, the training set corresponds to the union of
the first part with four of the five other parts and the test set is
constituted by the remaining part. This validation scheme
differs from the usual fivefold cross-validation because the first
part of the partition is included in every training set.

External Test Set. It is now widely accepted that an external
test is required to assess the predictivity of a classification
model.60,61 The constitution of a rigorous external test set, with
no involvement in the model development, was considered as a
part of this study. We collected every molecule from LeadScope
(Leadscope Inc., Dublin, OH, USA) that is annotated with
Ames mutagenicity data and does not belong to the Hansen
data set. We curated the LeadScope chemical structures in the
same way as for the Hansen data set, and we omitted molecules
when inconsistent mutagenicity data were observed. This
process resulted an external test set of 1178 molecules to
measure the classification accuracy of our rules on unseen data.

■ EXPERIMENTAL RESULTS
Quantitative Assessments of the Stable Emerging

Molecular Patterns. Throughout this section, key quantita-
tive experimental facts are provided and discussed; they result
from empirical investigations conducted on the data set
described in the previous section. The whole experiment was
performed thanks to the fivefold cross-validation scheme
introduced by Hansen et al.42 Every indicated result
corresponds to an average calculated over the five folds, unless
explicitly stipulated otherwise.

Closed Frequent Fragments. Setting the minimum
frequency threshold to a low value results in a huge number
of frequent fragments. For example, when the minimum
frequency threshold was set to 0.31%, which corresponds to the
necessity for a frequent fragment to occur in more than 17
molecules, three of the five folds of cross-validation each
produced more than 30 billion frequent fragments (see the
Supporting Information). This combinatorial explosion raises
technical difficulties: it becomes impracticable to process such a
huge number of fragments in order to investigate the
subsequent patterns. Consequently, we limited the experimen-
tal study to frequency thresholds greater than or equal to
0.36%, which corresponds to the necessity for a frequent
pattern to occur in at least 20 molecules.
Table 1 sets out the numbers of molecular fragments whose

growth rates, denoted by ρ, exceed the indicated value as the
minimum frequency threshold varies from 0.36% (at least 20
occurrences in different molecules of a training set) to 10% (at
least 552 occurrences in different molecules). For example,
when the minimum frequency threshold is set to 2%, 258.4
fragments are extracted from molecules of the training set and
thus are considered as frequent; among these frequent
fragments, 46.6 have ρ > 2, 12.8 have ρ > 5, and only 1.6
have ρ > 10.

Figure 4. Selection of the most stable emerging patterns.
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As we aim to discover structural schemes that are related to
mutagenicity, we are especially seeking fragments with high
growth rates. In the present experimental context, these highly
discriminative fragments (with ρ ≥ 10) appear only when the
frequency threshold is set to a low value (below 3%).
Consequently, in the following, the minimum threshold support
is set to its lowest investigated value, 0.36%: considering Hansen’s
data set together with its fivefold cross-validation scheme, this
corresponds to the requirement that the fragment occur in at
least 20 different molecules of a training set. Such a value for
the frequency threshold allows us to find fragments and
patterns that are neither too general nor too numerous.
Moreover, as any further generalization is based on at least 20
molecules, it avoids conclusions relying on too few observa-
tions.
Table 2 reports the average numbers of frequent molecular

fragments per molecule in a training set and in a test set; the

results are given separately for mutagens and for nonmutagens.
Table 2 also provides the cover rates achieved by the frequent
fragments: the cover rate achieved by a set of frequent
fragments here denotes the portion of a set of molecules
(mutagens or nonmutagens) that contains at least a frequent
fragment. On average, a molecule includes more than 30
frequent molecular fragments, with very little difference
between mutagens and nonmutagens. It follows very high
cover rates that exceed 99% on any of the subsets of molecules.
Very few molecules do not contain a frequent fragment: this
population averages 19 molecules on a training set and 3
molecules on a test set. The latter are marginally small
molecules compared to the molecules of the data set: on
average these molecules contain 6.7 atoms against 18.4 atoms
on the whole data set. As a conclusion, training and test sets
taken from the Hansen’s data set are properly covered by the
frequent molecular fragments.
Closed Frequent Patterns. Table 3 displays the average

cardinalities of molecular patterns for various minimum
frequency thresholds and growth rate thresholds. For example,
there are 222651 molecular patterns whose frequencies are over
0.36%; 1500 of these patterns have growth rates greater than
10. Comparison of the numbers of patterns exceeding a given
frequency and a given growth rate with the corresponding
numbers of fragments (see Table 1) shows that the number of
frequent patterns is by far more important than the related
number of frequent fragments. If we consider the growth rates

exceeding 10, the frequent patterns are 16 times more
numerous than the frequent fragments. In terms of association
rules, there are 1500 different association rules that have a
frequent pattern as their premise and conclude on the
mutagenicity of a molecule with a confidence exceeding 91%
(see eq 1), while there are only 91 rules having the same
confidence using a frequent fragment as a premise.
Table 4 reports the cover rates related to these frequent

molecular patterns having a frequency exceeding 0.36%, i.e., the

portions of mutagens and nonmutagens that contain at least
one of these frequent molecular patterns. With the same
frequency threshold, when a molecule contains a frequent
fragment, it then contains the pattern that corresponds to this
fragment alone. Therefore, a cover rate obtained with the
frequent patterns is at least as important as the corresponding
cover rate with the frequent fragments. Conversely, a molecular
pattern is composed of fragments, and thus, its cover rate
cannot exceed the fragment cover rate. Consequently, it is not
surprising that the cover rates indicated in Table 4 are the same
as the ones obtained with the frequent fragments (see Table 2).

Emerging Pruned Closed Patterns. Figure 5 details the
cover rates related to the emerging molecular patterns
according to different growth rate thresholds; the cover rates
are given separately for mutagens and nonmutagens, and the
figures correspond to averages measured on the five test sets.
For instance, the molecular patterns with growth rates greater
than or equal to 5 cover 74.04% of mutagens, while they cover
only 31.96% of nonmutagens. As expected, the higher the
minimum growth rate threshold is, the greater is the difference
between the two cover rates. For example, when patterns
having growth rates above 5 are considered, then the cover rate
of mutagens is 2.32 times higher than the cover rate of
nonmutagens. This ratio reaches 3.31 for patterns whose
growth rates exceed 10. These results indicate that the
emerging molecular patterns still occur discriminatively outside
of their training set.
For several consecutive growth rate ranges, Table 5 reports

facts about the frequent patterns whose growth rates belong to
the given interval; the last column, with a growth rate value of
∞, is dedicated to the frequent patterns that occur only in
mutagens. The three rows in the top portion of the table
provide results computed for the training set averages
calculated from the five training sets of the cross-validation.
The rows entitled “ρ” and “related confidence” provide ranges

Table 1. Counts of Closed Frequent Fragments

frequency threshold 0.36% 1% 2% 5% 10%
no. of fragments

total 2379.0 626.0 258.4 86.6 44.4
ρ ≥ 2 532.8 143.4 46.6 14.4 12.0
ρ ≥ 5 214.6 51.6 12.8 1.6 0.6
ρ ≥ 10 91.2 17.8 1.6 0.0 0.0

Table 2. Average Numbers of Closed Frequent Fragments
per Molecule and the Related Cover Rates

mutagens nonmutagens

training
set test set

training
set test set

no. of fragments per
molecule

30.58 34.84 31.97 38.74

cover rate 99.78% 99.52% 99.86% 99.36%

Table 3. Counts of Closed Frequent Patterns

frequency threshold 0.36% 1% 2% 5% 10%
no. of patterns

total 222651.0 38889.6 8083.6 868.0 194.8
ρ ≥ 2 12968.6 2217.4 534.8 75.8 41.4
ρ ≥ 5 4564.2 690.2 122.4 4.2 1.2
ρ ≥ 10 1499.8 189.0 22.8 0.0 0.0

Table 4. Average Numbers of Frequent Molecular Patterns
Per Molecule and the Related Cover Rates

mutagens nonmutagens

training
set test set

training
set test set

no. of patterns per
molecule

1262.23 1518.64 2298.79 2816.33

cover rate 99.78% 99.52% 99.86% 99.36%
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of growth rates from the training set and the confidences of the
related association rules. The third row reports the numbers of
patterns in the related growth rate ranges. The three rows in
the bottom portion of the table deal with the application of the
molecular patterns on a test set. If a given pattern occurs (at
least once) in a given molecule, we name it a match (reported
in the first row); and if the molecule is a mutagen, we name it a
good match (reported in the second row). The last row
indicates the average confidences of the related association rules
measured on the test sets, corresponding to the proportions of
good matches among the matches.
For example, there are 1094 patterns whose growth rates lie

between 10 and 20. Each one of these 1094 patterns occurs on
average in 7.95 molecules of a test set; thus, the number of
matches is 8699. Among these 8699 occurrences, 7726 occur in
a mutagen, thus, the level of confidence on the test sets is equal
to 0.89. The application of the extracted molecular patterns as
association rules on the test sets leads to very fair levels of
confidence, ranging from 74% to 95%. Moreover, the level of
confidence regularly increases together with the accounted
growth rate. On average, 370 frequent molecular patterns occur
only in mutagens of the training set. These patterns reach a
particularly high level of confidence (95%) when they are
applied to the molecules of a test set.
These quantitative facts constitute a strong advocation in

favor of the emerging pruned closed patterns. Even when the
growth rate threshold is high enough to be discriminative, the
emerging pruned closed patterns still occur in a large portion of
mutagens of a test set. Moreover, when the frequent emerging

patterns are applied as association rules, they demonstrate high
levels of confidence.

Stable Emerging Patterns. The previous section has
provided experimental results that constitute a fair advocation
for using emerging pruned closed patterns. Despite this fact, in
order to obtain potential structural alerts, we rely on the
stability measure to select candidates among the frequent
emerging molecular patterns. This selection aims to provide a
reasonable number of molecular patterns that are as
independent of the constitution of the training set as possible.

Setting of the Minimum Stability Threshold. The selection
based on the stability measure relies on a minimum stability
threshold. To automatically set this parameter to its best value,
we performed a cross-validation on each of the cross-validation
folds of Hansen’s data set (see the Supporting Information). To
evaluate the impact of a value of the stability threshold, we
measured this impact on the area under the curve (AUC) of a
receiver operating characteristic (ROC) plot. An ROC plot is
conceptually similar to an enrichment plot in that it shows the
relationship between the true-positive rate and the false-positive
rate.62 The AUC of a ROC plot is a common way to
quantitatively summarize the overall quality of the plot. On the
basis of the AUC indicator, we aim here to discard as many
frequent emerging molecular patterns as possible while
conserving the ability to discriminate between mutagens and
nonmutagens. Table 6 reports the best values of the stability
and its related AUC for each of the original Hansen’s folds. It
also reports the average of these thresholds over all of the folds;
the mean value will be used in the following. To maximize the

Figure 5. Cover rates obtained with the closed frequent patterns in a test set.

Table 5. Closed Frequent Patterns According to Their Growth Rates

Computed from the Training Sets
ρ [2:5] [5:10] [10:20] [20:∞[ ∞
related confidence [0.70:0.85] [0.85:0.92] [0.92:0.96] [0.96:1.00[ 1.00
no. of patterns 8404.40 3064.40 1094.00 405.80 370.20

Measured in the Test Sets
no. of matches 82658.20 26227.20 8699.00 2559.80 1887.20
no. of good matches 61631.60 21995.60 7726.20 2322.80 1790.80
measured confidence 0.74 0.84 0.89 0.91 0.95

Table 6. Best Values of the Stability Thresholds and the Related AUCs

fold 1 2 3 4 5 average
stability threshold 0.92 0.99 0.93 0.98 0.96 0.96
AUC 0.7792 0.7697 0.7739 0.7811 0.7789 0.7766
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AUC, the stability has to be set to a high value (over 0.90) on
each cross-validation fold. On average, the value of the stability
threshold is 0.96.
Stable Emerging Patterns. The quantitative assessment of

the stable emerging molecular patterns relies on the measure-
ments already used for assessing the SEPs. Table 7 displays the

numbers of SEPs according to different frequency thresholds
and different growth rate thresholds. Analogous counts without
selection based on the stability are given in Table 3. A
comparison of the results provided by Tables 3 and 7 indicates
that the stability-based selection is very efficient. When the
frequency threshold is set to 0.36%, the number of patterns is
reduced by a factor of 15. At the same time, the selection
resulting from a stability threshold tends to keep patterns with
high values of the growth rate. For example, the frequent
patterns having growth rates above 5 are reduced by only a
factor of 7.5. The selection based on stability raises the portion
of the strongly dicriminative molecular patterns among all of
the frequent patterns; this fact fully coheres with the part such a
selection has to play.
For a frequency threshold of 0.36%, Table 8 reports the

cover rates related to the SEPs, i.e., the portions of mutagens

and nonmutagens that contain at least one of these SEPs. A
comparison with Table 4 indicates that the cover rates are

highly maintained from the closed patterns to the SEPs. While
the number of patterns has been divided by 15, the average
number of occurrences per molecule is reduced by a factor
varying from 5.2 (on mutagens of training sets) to 9.2 (on
nonmutagens of test sets). These results indicate that the SEPs
still properly describe the molecules of the data set.
Figure 6 provides the cover rates obtained with the SEPs on a

test set. For example, with the growth rate threshold set to 4,
76.10% of mutagens of a test set and 31.96% of nonmutagens
contain at least one SEP. The comparison of these results with
the ones in Figure 5 shows that the cover rate of mutagens
slightly decreases when SEPs are used (the ratio varies between
1 and 85%), while the cover rate of nonmutagens decreases
more significantly (the ratio varies from 1 to 60%). It follows
that mutagens and nonmutagens are separated better by the set
of SEPs than by the whole set of emerging pruned closed
patterns when the growth rate threshold is set to a high value.
As a conclusion, the selection of the SEPs leads to a set of

patterns that is more discriminative. Moreover, as such a
selection noticeably decreases the number of patterns, it
enables one to focus on the strongest chemical patterns and
thus facilitates the examination of the selected patterns as
potential structural alerts.

Contribution of the Stability. As seen previously, the
stability greatly reduces the number of molecular patterns
without jeopardizing the cover rate of molecules. To assess the
contribution of stability in terms of discriminating power,
molecular patterns and stable molecular patterns need to be
compared in classification.
Molecular patterns can be used in association rules in which

the premise is the presence of a pattern in a molecule and the
conclusion is mutagenicity of a molecule with a confidence
immediately correlated to the growth rate of the pattern in the
premise. Given a growth rate threshold and a set of association
rules, a naive classifier can be engineered to separate the
molecules. Using a fivefold cross-validation (see the Supporting
Information), the growth rate threshold is set to the value
maximizing the accuracy (this value ranges from 3.39 to 4.05).
Table 9 reports the results in terms of accuracy, precision,

recall, and AUC. The accuracy is a good prediction rate of a
classifier. The precision is the number of mutagens among the
predicted mutagen molecules: precision = 100% × TP/(TP +
FP), where TP and FP are the numbers of true positives and
false positives, respectively. The recall corresponds to the

Table 7. Counts of Stable Emerging Patterns

frequency threshold 0.36% 1% 2% 5% 10%
no. of SEPs

total 14943.0 9641.8 4387.8 792.4 183.2
ρ ≥ 2 2167.2 1036.4 372.6 62.2 30.8
ρ ≥ 5 616.8 261.0 71.8 3.8 0.8
ρ ≥ 10 164.0 57.0 10.2 0.0 0.0

Table 8. Average Numbers of SEPs Per Molecule and the
Related Cover Rates

mutagens nonmutagens

training
set test set

training
set test set

no. of patterns per
compound

242.86 263.35 364.04 307.71

cover rate 99.78% 99.51% 99.86% 99.36%

Figure 6. Cover rates obtained with the SEPs on a test set.
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number of mutagens predicted among the whole set of
mutagens: recall = 100% × TP/(TP + FN), where FN is the
number of false negatives. The first row reports results obtained
with emerging pruned closed patterns (EPCPs) in a naive
classifier, and the second row gives the results obtained with
SEPs.
The use of SEPs rather than EPCPs increases the accuracy of

the naive classifier by more than 1%. It also increases the
precision by about 3%, but at the cost of 3% in the recall.
Nevertheless, these results on the naive classifier show that
using SEPs improves the overall quality of the classifier. This
can be explained by the fact that nonstable patterns do not
generalize very well. Nonstable patterns are sensitive to their
extension, so removing a few molecules may exclude them from
the pattern set. This behavior can be related to labeling errors
or statistical anomalies in the training set.
Seal et al.63 published classification results using four genuine

classifiers on Hansen’s data set. One was a naiv̈e Bayes classifier,
which achieved an accuracy of 63.28%, and a sequential
minimal optimizer achieved an accuracy of 66.43%. J48, which
is a decision-tree-based classifier, reached an accuracy of
73.65%, and finally, a random forest classifier reached a high
accuracy of 79.18%. Our results using SEPs are competitive
with the ones published by Seal et al.63 Indeed, they outperform
the naiv̈e Bayes classifier and the sequential minimal optimizer,
give results similar to those of J48, but are less good than the
random forest classifier. However, it is important to note that
results of Seal et al.63 did not use the same cross-validation.
They used a fivefold cross-validation on all of the molecules,
and thus, molecules from the static training set could be used in
a test set. These molecules are easier to classify (see Hansen et
al.42), so including them in the test set may boost the accuracy.
Using the same type of cross-validation increases the accuracy
of our approach to 74.57%, which ranks the SEPs as the
second-best classifier in terms of accuracy.
If we compare our results in terms of AUC, it is possible to

complete our comparaison with the state of the art. Hansen et
al.42 and Xu et al.64 used genuine classifiers (ranging from k
nearest neighbors (k-NN) to support vector machine (SVM))
to separate mutagens from nonmutagens and reported as best
results AUC values of 0.86 and 0.858, respectively. These
results are better than the results returned by our naiv̈e
classifier, but nonetheless, our results in terms AUC indicate
that the use of SEPs as a fingerprint in more sophisticated
classification techniques is promising.
Expert Analysis of the Molecular Patterns. Navigation

Tool for Exploring the Emerging Molecular Patterns. The
previous section practically indicates that the successive
application of a constraint of frequency, a constraint of
emergence, and a constraint of stability leads to the automatic
identification of promising molecular patterns. Nevertheless, in
a process of chemical knowledge discovery, the emerging
molecular patterns need a further manual examination by
experts in the domain. The examination may produce
definitions of new validated structural alerts, but it may also

lead to a better understanding of the related activity (e.g., of the
mutagenicity). Such work has to account for both the emerging
molecular patterns and the relationship between them.
As the Hasse diagram provides an efficient way to explore a

set of molecular patterns, we have implemented a tool that
automatically builds the Hasse diagram related to a set of
molecular patterns; this tool allows a user to navigate through
the results thanks to an interactive Web site (https://
chemoinfo.greyc.fr/2014_Metivier/). This Web site also
provides a description of the molecular patterns with the
associated numerical features (frequency, growth rate, and
stability). Moreover, from the Web page dedicated to a given
molecular pattern, one can directly access the list of each
molecule that contains this pattern.

Analysis of the Frequent Molecular Fragments. In our
methodology, molecules are redescribed by means of the
occurrences of the closed frequent fragments (MFs). Selections
of the MFs resulting from the mining process are displayed in
Tables 10 and 11. These MFs were selected on the basis of
their similarities to ToxAlerts toxicophores65 for mutagenicity.
ToxAlerts is an open expert-knowledge-based platform that
contains more than 600 toxicophores from the literature for
several end points such as mutagenicity, carcinogenicity, skin
sensitization, idiosyncratic drug toxicity, and acute aquatic
toxicity. In Tables 10 and 11, for every MF, the structure is
given together with the support and the growth rate. The
support of an MF (denoted here by s) corresponds to the
number of molecules in which the MF occurs. The top 10 MFs
(Table 10) are all JEPs, thus corresponding to structural

features that are present in the toxic class but absent from the
nontoxic one. Among them, we easily retrieve MFs associated
with well-known toxicophores such as heteroaromatic nitro
groups (MF_945, MF_954), polycyclic aromatic amines
(MF_1666, MF_991), a nitrosamine group (MF_252), an
azide group (MF_4), and a polycyclic planar hydrocarbon
system (MF_1616). Since our mining process only preserves

Table 9. Result Table for the Classification of Hansen’S
Dataset with Several Classifiers

no. of
patterns

accuracy
(%)

precision
(%)

recall
(%) AUC

EPCPs 222651 71.73 73.39 80.85 0.777
SEPs 14943 72.82 76.04 77.92 0.785

Table 10. List of the Molecular Fragments Corresponding to
JEPs
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the ring structures, some chemical functions can be truncated
and do not always accord with chemical intuition. At first glance
this can look like a limitation of the MFs automatically derived
from a database compared with the domain expert rules.
However, we can consider MF_1211, which highlights the

capability of the method to extract generalized toxicophores.
MF_1211 summarizes in only one toxicophore the mutagenic
effects of polycyclic aromatic nitro groups and polycyclic
aromatic amines. MF_87 is another example of such
generalized toxicophores, but contrary to MF_1211, the related

Figure 7. Three toxicophores generalized by MF_87.

Figure 8. Detection of the nitrenium MF_414, metabolite of MF_413.

Table 11. Comparison of Molecular Fragments Corresponding to EPs with Known Structural Alerts from ToxAlerts
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chemical functions are not obvious. By analyzing the extension
of MF_87 we observed that it corresponds to the amalgam of
N-nitroso-N-alkylcarbamate, acetoxymethyl nitrosamine, and
acetoxymethyl N-nitro groups (Figure 7). We can also notice
that these three groups were not supported by a sufficient
number of examples in the training data set, preventing their
individual extraction. The last JEP, MF_414, is of particular
interest because it corresponds to a nitrenium ion, a DNA-
alkylating agent resulting from the metabolization of MF_413
(Figure 8).
A limitation of JEPs is their inherent intolerance of noisy

data, since the presence of even a small number of misclassified
compounds can lead to the nondetection of very interesting
patterns. Our method is also able to mine EPs that are more
noise-tolerant in comparison with JEPs. EPs represent
discriminating patterns that are common to toxic compounds
but can also cover some nontoxic ones. Table 11 displays the
statistical results for the most general EPs that are equivalent to
35 out of the 53 nonredundant well-known structural alerts.65

These MFs are sorted according to their growth rates, allowing
a domain expert to examine those with the highest growth rates
first. Because of the straight relation between the growth rate
and the contrast of the MF between the toxic and nontoxic
classes, the top-ranked MFs represent the most probable
toxicophores. In the following, we will discuss some
representative, interesting, and sometimes intriguing results.
Let us first consider MF_73, which corresponds to a

generalization of the N-nitroso-N-alkylamide, N-nitroso-N-
alkylurea, and N-nitroso-N-alkylcarbamate toxicophores.
MF_73 is supported by 43 toxics and only one nontoxic,

resulting in an EP with a very high growth rate of approximately
36.9 denoting a very high discriminatory potency. The relation
between the mutagenicity end point and the structural
variations of the aromatic nitro compounds is also rightly
captured by our method. While the heteroaromatic nitro
compounds 2-nitrofurane and 2-nitrothiophene are both JEPs,
the general toxicophore for an aromatic nitro group (MF_134)
is basically an EP with a growth rate of 4.63. In regard to
aromatic amines (Figure 9), significant differences were also
observed as functions of the nature of the amine (MF_1085 vs
MF_1067), the number of aromatic rings (MF_1085 vs
MF_1177), and the number of amino groups (MF_1085 vs
MF_1016). Similarly a relation between the nature of the
nitroso substituents and the mutagenicity potency of the
resulting compounds is emphasized: the growth rate increases
in going from aliphatic nitroso compounds (MF_153, ρ = 1.33)
to nitrosoarenes (MF_920, ρ = 4.70), and the highest growth
rate for nitroso compounds is associated with polycyclic
structures (MF_1201, ρ = 14.39; see the Supporting
Information). Finally, we would like to mention an intriguing
result. Although the alkyl esters of phosphonic and phosphoric
acids are widely accepted as mutagenic toxicophores, the
corresponding EP (MF_2097) exhibits a growth rate smaller
than 1 (ρ = 0.58). This value indicates a greater extension of
MF_2097 among the nontoxic class. The constitution of
Hansen’s data set does not allow its mutagenic potential to be
highlighted.
In comparison with the toxicophores from ToxAlerts, those

that are missing are not supported by a sufficient number of
examples in the training data set to be extracted by our method.

Figure 9. Growth rates associated with different aromatic amines.

Figure 10. Example of a conjunction of SEPs leading to a JEP.
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Indeed, the 18 missing toxicophores match from 0 to 19
compounds and did not satisfy the frequency constraint, which
was set to 0.36% (i.e., an extent of 20 compounds). For
example, among the missed toxicophores, the alkyl nitrite
group, the α,β-unsaturated aliphatic alkoxy group, and the
haloamines were respectively represented by 7, 13, and 6
mutagenic compounds and no nonmutagenic ones. Thus, with
a reduction in the frequency threshold, these toxicophores
would have been extracted.
Analysis of the Stable Emerging Patterns. In this section,

we focus on the SEPs. As an additional measure, we can
evaluate the following ratio:

ρ
ρ

=
∈

p
p

f
( )

( )
argmax ( )f f ii (3)

where p is an SEP and f is the set of closed frequent fragments
included in p. When is greater than 1, the conjunction of
fragments is more mutagenic than each of the individual
fragments. Two hypotheses can explain this phenomenon. The
first one is a conjunction of individually nonmutagenic

fragments whose association leads to a mutagenic pattern. As
an example (Figure 10), let us consider the conjunction of a
tertiary amine (SEP_2458), an anilino fragment (SEP_6961),
and a phenyl group (SEP_16868). The associations between
the tertiary amine and the phenyl group (SEP_2485) and
between the anilino fragment and the phenyl group
(SEP_6984) do not lead to high growth rates (1.12 and 1.04,
respectively), but the association of all three fragments leads to
a JEP (SEP_2472, ρ = ∞, s = 31, = ∞).
The second hypothesis is stimulation66 associated with some

fragments, leading to an increase in the overall mutagenic
property. For example (Figure 11), separately considered the
aromatic nitro group already represents a constrasting
molecular fragment in favor of mutagenicity (SEP_597, ρ =
4.63). The conjunction with a nitrogen (NH) connected to an
aromatic group (SEP_11294) increases the growth rate
(SEP_706, ρ = 5.54). The addition of a third fragment
corresponding to two aromatic rings connected by a single
bond (SEP_13672) even leads to a JEP (SEP_733, ρ = ∞, s =
35, =∞). For most of the cases, this notion of stimulation is
clearly pointed out.

Figure 11. Example of stimulation of an aromatic nitro group.

Figure 12. ROC curves for (left) the training set and (right) the external test set.
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External Test of the SEPs. An independent external test
set consisting of 1178 additional molecules selected from
LeadScope was used to evaluate the generalization of the
predicting rules in application, and the performances are shown
in Figure 12. To be classified as a mutagen, a compound must
exhibit at least one SEP. The area under the ROC curve and the
maximum prediction rate were approximately 0.76 and 0.73,
respectively. We observed a slight decrease in the performance
in comparison with the training set (0.83 and 0.76,
respectively). The maximum prediction rate was obtained
with molecular patterns displaying growth rates greater than 4.
By using SEPs with lower growth rates, we would detect a
greater number of mutagens, but the number of false positives
(i.e., nonmutagens classified as mutagens) would also increase.
Implementation of the rules in more sophisticated classifiers,
such as the k-NN algorithm, will improve the performance, as
suggested by preliminary studies.

■ CONCLUSION

Stable emerging patterns (SEPs) have been designed to
discover new relationships between molecular structural
features and the toxicological behavior of a molecule. The
computation of these patterns from a molecular data set has
been achieved by means of a sophisticated workflow that
integrates a graph mining tool with a well-established
measurement of the contrast between classes and with the
stability of a pattern, a new notion from the domain of formal
concept analysis.
The methodology has been practically applied to a well-tried

benchmark data set in order to study mutagenicity. The
extracted SEPs have been assessed through both quantitative
examination and chemical expertise. The results show that
these patterns generalize very efficiently: their quality is
preserved from the training set to the test set. Moreover, the
SEPs cover a large scope of different relationships between a
molecular structure and its mutagenicity. It follows that the
SEPs, when they are used alone as association rules, reach a fair
level of confidence on a test set. The chemical analysis has
shown that SEPs demonstrate a high ability to express
structural alerts. Several SEPs will be further studied, and
they may define new structural alerts.
As a conclusion, SEPs represent an advance in the automatic

extraction of structural relations between molecular structures
and a given activity. As a technical innovation, they offer several
promising future works. For example, these SEPs may enter
into the description of a molecule used by a prediction tool,
increasing both the efficiency of the predictions and their
explanatory power. This prediction tool will help us to select
molecules from an in-house chemical library to be biologically
assessed using the Ames test.
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■ NOTE ADDED AFTER ASAP PUBLICATION
There was an error in Figure 10 in the version published ASAP
May 7, 2015; the corrected version was published ASAP May
12, 2015.
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