
International Journal of Approximate Reasoning 63 (2015) 89–100
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Interactive error correction in implicative theories

Sergei O. Kuznetsov a, Artem Revenko a,b,∗
a National Research University Higher School of Economics, Pokrovskiy bd. 11, 109028 Moscow, Russia
b Technische Universität Dresden, Zellescher Weg 12-14, 01069 Dresden, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 October 2014
Received in revised form 3 April 2015
Accepted 10 June 2015
Available online 16 June 2015

Keywords:
Implicative theory
Error correction
Closure system
Formal concept analysis

Errors in implicative theories coming from binary data are studied. First, two classes of
errors that may affect implicative theories are singled out. Two approaches for finding
errors of these classes are proposed, both of them based on methods of Formal Concept
Analysis. The first approach uses the cardinality minimal (canonical or Duquenne–Guigues)
implication base. The construction of such a base is computationally intractable. Using
an alternative approach one checks possible errors on the fly in polynomial time via
computing closures of subsets of attributes. Both approaches are interactive, based on
questions about the validity of certain implications. Results of computer experiments are
presented and discussed.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Implicative theories consisting of formulas of the form “if A, then B” provide a standard way for describing the structure
of domain knowledge. They are extensively used in various research areas, e.g., biology [18], pharmacology [6,5], semantic
web [19], knowledge discovery [12,34], decision making [26], classification [24], ontology engineering [2]. In many cases the
exactness of rules plays a crucial role, for example in research related to strictly formalized domains like Boolean algebras
[22], algebraic lattices [7], or algebraic identities [27].

In many applications an exact implicative theory is constructed from a piece of available data. It is well known that
a single mistake in this data can drastically change the resulting implicative theory [14] (the same is true for association
rules if there are some exceptions and an error). The implicative theory is not going to recover from this error even if
further error-free data is added to the underlying set. Therefore, implicative theories are not error tolerant. However, in the
real-world applications, especially if multiple users are expected to work with data, one cannot guarantee the absence of
errors. More than that, someone may be willing to spoil the result on purpose by adding erroneous instances, in order to
prevent from discovering valid implications. Therefore, a procedure for recovering from errors is essential for the usage of
implicative theories.

Here we assume that in the beginning there is already some data on hands and new data arrives in the work flow.
The goal is to guarantee the correctness of the implicative theory with respect to the initial data which are considered
to be reliable. We do not assume that a user, which is going to work with the data and the implicative theory, is always
able to explicitly state any knowledge about data domain or has any knowledge about methods in use. That is why it is

* Corresponding author at: Technische Universität Dresden, Zellescher Weg 12-14, 01069 Dresden, Germany.
E-mail addresses: skuznetsov@hse.ru (S.O. Kuznetsov), artem_viktorovich.revenko@mailbox.tu-dresden.de (A. Revenko).
http://dx.doi.org/10.1016/j.ijar.2015.06.004
0888-613X/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ijar.2015.06.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:skuznetsov@hse.ru
mailto:artem_viktorovich.revenko@mailbox.tu-dresden.de
http://dx.doi.org/10.1016/j.ijar.2015.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2015.06.004&domain=pdf

90 S.O. Kuznetsov, A. Revenko / International Journal of Approximate Reasoning 63 (2015) 89–100
Fig. 1. Data table and new entry from Example 1.

important to develop a transparent and easy method for error correction. In particular, it is important to find and output
possible errors in a human understandable form. To attain this goal a natural framework can be that of Formal Concept
Analysis (FCA) [14], where methods and algorithms for finding implicative theories of binary data (formal contexts) are well
elaborated and widely used [13,30].

Example 1. To illustrate our ideas we provide a use-case example. Let there be data from Fig. 1 on hands. New data is
coming from an untrusted source and it is intended to be added to the existing data. The user expects possible errors
in new data, however, the user is not able to check every single entry (possibly, due to a large number of columns). The
solution we propose in this paper would output the question: Does ‘Year of Birth: 1980’ imply ‘Lawful Age’? As we are now
in year 2015, the answer is obviously ‘Yes’ and, therefore, an error is revealed.

1.2. Related work

Methods for imputing missing values are well studied. In [33] and [31] detailed overviews of existing techniques are
presented. Among others there are techniques of ignoring entries with missing values, imputing average values, and more
complicated ones such as decision trees, neural networks [31], Nearest Neighbor approach [16]. Having a missing value,
there is no need to search for an error, as it is clear from the problem statement which value should be changed (or
imputed). An approach proposed in this paper bares some similarity to the Nearest Neighbor method, but aims at solving a
different task. Besides that, the imputation techniques (like, e.g. averaging) are mostly not relevant for binary data.

Error finding and eliminating are widely discussed in various fields of computer science. The problems of lineage or data
provenance, where one needs to explain errors, trace reasons for a query, etc. are well known in KDD domain [32]. These
techniques are very useful and efficient, however, they are not appropriate for correcting errors in binary data tables.

In [9] an impressive way of using expert knowledge presented in the form of editing rules and certain regions for
databases are surveyed. Information in the form of editing rules prevents the errors from getting in to the database. The
approach presented in this paper aims at finding and correcting errors without any previously formalized knowledge.

The paper [10] presents an interesting approach to dealing with mistakes in answering questions (like the ones we will
discuss below) in the process of knowledge base completion within the framework of Description Logics. This approach
allows recovering from such mistakes in such an effective manner that the information input is used upon mistake recovery.
However, the detection and correction of mistakes is left to pinpointing.

Pinpointing is a very helpful technique for recovering from inconsistencies. The goal of pinpointing is the following:
for a given inconsistent set of rules (not only implicative) find minimal inconsistent subsets [3,23]. The inconsistency is
detected via checking if a certain erroneous consequence holds. This technique is successfully applied in different description
logics. The complexity of pinpointing is normally beyond polynomial. An approach introduced in this paper (Section 4, base
approach) is closely related to pinpointing; it proceeds from knowledge base constructed from data. The complexity is also
beyond polynomial. However, an alternative approach (Section 4, closure approach) takes the advantage of having the data
and proposes a polynomial-time solution. In this work we do not modify the knowledge base directly, but we correct the
errors in data in such a way that the corresponding implicative theory becomes error-free.

As implicative theories is another view of Horn theories [14], the problem of finding explanations in Horn theories turns
out to be closely connected to our problem. Namely, an entry in the binary data table can also be considered as a fact to be
explained. In [17] it is shown that such explanations may be found in polynomial time. However, here we aim at explaining
existence or absence of all attributes at the same time. Also we state our task and our solutions in a different language and
provide algorithms for practical usage. The case of negative attributes is not covered in [17] as opposed to this work.

The present paper is a follow-up work to [28].

Remark 1. In this paper we assume that we can put questions to an expert in the domain who gives correct answers.

Remark 2. All sets and contexts we consider in this paper are assumed to be finite, which practically means an obvious
constraint on finiteness of data at hand.

S.O. Kuznetsov, A. Revenko / International Journal of Approximate Reasoning 63 (2015) 89–100 91
1.3. Contributions

We introduce an interactive procedure for making implicative theory of data error-free. This goal is achieved via finding
and eliminating errors in rows of data tables. In FCA terms, we propose an approach for finding errors in descriptions of
new objects (intents in terms of FCA) that affect the canonical implication base.

1. We introduce two possible classes of errors in data tables (formal contexts, Section 3).
2. We introduce two approaches to finding and eliminating errors of certain classes (Sections 4). Both aim at restoring

dependencies from data domain and eliminating errors in implicative theory.
(a) One approach is based on finding those implications from an implication base that are not respected by the new

object intent (base approach). However, the base approach leads to an intractable solution, because constructing an
implication base is intractable.

(b) We introduce another approach (closure approach), where we do not need to compute the set of all implications,
and prove its effectiveness. We show that it helps to find all possible errors of certain types (Proposition 1) in
polynomial time (Proposition 2).

The approaches are experimentally compared in Section 5.

2. Main definitions

In what follows we keep to standard definitions of FCA [14]. Let G and M be sets and let I ⊆ G × M be a binary relation
between G and M . The triple K := (G, M, I) is called a (formal) context. Set G is called a set of objects, set M is called a set
of attributes, I is called incidence relation.

Consider mappings ϕ: 2G → 2M and ψ: 2M → 2G : ϕ(X) := {m ∈ M | g Im for all g ∈ X}, ψ(A) := {g ∈ G | g Im for all
m ∈ A}. Mappings ϕ and ψ define a Galois connection between (2G , ⊆) and (2M , ⊆), i.e. ϕ(X) ⊆ A ⇔ ψ(A) ⊆ X . Hence, for
any X1, X2 ⊆ G , A1, A2 ⊆ M one has

1. X1 ⊆ X2 ⇒ ϕ(X2) ⊆ ϕ(X1)

2. A1 ⊆ A2 ⇒ ψ(A2) ⊆ ψ(A1)

3. X1 ⊆ ψϕ(X1) and A1 ⊆ ϕψ(A1)

Usually, instead of ϕ and ψ a single notation (·)′ is used. (·)′ is usually called a derivation operator. For X ⊆ G the set X ′
is called the intent of X . Similarly, for A ⊆ M the set A′ is called the extent of A. Operator (·)′′ is idempotent, extensive
and monotone, i.e., has the properties of algebraical closure both on 2G and 2M . Hence, (Z)′′ is called closure of Z in K for
Z ⊆ M or Z ⊆ G . If (Z)′′ = Z , set Z is called closed in K. Applying Properties 1 and 2 consequently one gets the monotonicity
property: for any Z1, Z2 ⊆ G or Z1, Z2 ⊆ M one has Z1 ⊆ Z2 ⇒ Z ′′

1 ⊆ Z ′′
2 .

In [29] authors introduce a generalized framework for considering positive and negative attributes. In this paper we also
introduce negative attributes, however, we do not need the whole framework for our purpose. Our definitions comply with
the definitions from [29].

The set M := {m | m ∈ M} is called the set of negative attributes. Consider the following relation I := {(g,m) | (g, m) ∈
(G × M) \ I} between G and M . The context Kδ := (G, M ∪ M, I ∪ I) is called the dichotomized context to K, the corresponding
derivation operator is denoted by (·)δ . Let X ⊆ G . Note that m ∈ Xδ iff m /∈ g′ for all g ∈ X . If m ∈ Xδ then, as it does not
lead to ambiguity, we informally write m ∈ X ′ . In this paper objects and context are represented without negative attributes,
however, in the processing stage they are normally converted to the dichotomized representation in order to be able to work
with negative attributes.

Consider the context Kδ = (G, M ∪ M, I ∪ I). This context is isomorphic to the context Kδ = (G, M ∪ M, I ∪ I) and
m ∈ Xδ ⇔ m ∈ Xδ .

A formal concept of a formal context (G, M, I) is a pair (X, A), where X ⊆ G, A ⊆ M, X ′ = A, and A′ = X . The set X is
called the extent, and the set A is called the intent of the concept (X, A).

One says that an object g such that g′
= ∅ is reducible in a context (G, M, I) iff ∃X ⊆ G \ {g} : g′ = ⋂
j∈X

j′ . Removing

reducible objects does not change the concept lattice up to isomorphism.
In this paper implicative theories are formalized in terms of implication bases. An implication of K := (G, M, I) is defined

as a pair (A, B), written A → B , where A, B ⊆ M . A is called the premise, B is called the conclusion of implication A → B .
Implication A → B is respected by a set of attributes N if A � N or B ⊆ N . Implication A → B holds (is valid) in K if it
is respected by all g′, g ∈ G , i.e. every object, that has all the attributes from A, also has all the attributes from B , or,
equivalently, if A′ ⊆ B ′ . Implications satisfy Armstrong rules:

A → A
,

A → B

A ∪ C → B
,

A → B, B ∪ C → D

A ∪ C → D

Support of implication A → B in context K is (A ∪ B)′ , i.e., the set of all objects of K, whose intents contain the premise
and the conclusion of the implication. A unit implication is defined as an implication with only one attribute in conclusion,

92 S.O. Kuznetsov, A. Revenko / International Journal of Approximate Reasoning 63 (2015) 89–100
i.e. A → b, where A ⊆ M, b ∈ M . Using Armstrong rules, every implication A → B can be represented as a set of unit
implications {A → b | b ∈ B}, so one can always observe only unit implications without loss of generality.

Consider implications of the form A → b, where A ⊆ M,b ∈ M in the dichotomized context Kδ . This implication is said
to be respected by N ⊆ M if A � N or b ∈ M \ N . This implication holds in Kδ iff Aδ ⊆ bδ . In this paper all the implications
with negative attributes are considered as implications of the dichotomized context.

An implication base of a context K is defined as a set L of implications of K, from which any valid implication for K can
be deduced by Armstrong rules and none of the proper subsets of L has this property. A cardinality minimal implication
base was characterized in [15] and is known as the canonical implication base, or Duquenne–Guigues base, or stembase. In [13]
the premises of implications of the canonical base were characterized in terms of pseudo-intents. A subset of attributes
P ⊆ M is called a pseudo-intent if P
= P ′′ and for every pseudo-intent Q such that Q ⊂ P , one has Q ′′ ⊂ P . The canonical
implication base looks as follows: {P → (P ′′ \ P) | P – pseudo-intent}.

3. Errors in implicative theories

Without loss of generality we consider all observable properties to be expressed in terms of positive attributes from M .
We aim at restoring valid implications and, therefore, correct errors in implicative theory of data. The goal is achieved if all
implications are valid implications of the context. As already mentioned, all implications are reduced to unit ones.

Consider the following possible classes of implicative formulas (A ⊆ M, b ∈ M), which will be called dependencies:

1. If an entity has all attributes from A, then it has attribute b (A → b);
2. If an entity has all attributes from A, then it does not have attribute b (A → b);

Remark 3. In this work we consider only data domain dependencies in the form of implications with no negative attributes
in the premise. It is possible to consider negative attributes in the premise by means of considering complementary context
(G, M, (G × M) \ I). However, this is equivalent to introducing disjunction to our language: A → B ∨ C :⇔ A, B → C . Then,
having negation and disjunction we end up in the full propositional logic, for which computing the closure is not polynomial
anymore. Therefore, it would not be possible to introduce a polynomial solution of this problem.

Only formulas of Class 1 are standard FCA implications, formulas of Class 2 are FCA implications if the negation of
attributes are explicitly introduced in the context. If there are no errors in a context, all the dependencies of Class 1 are
deducible from an implication base. However, if not enough data is added to the context yet, we may get false consequences.
Therefore, not all valid implications of the context have to necessarily be data domain dependencies. Nevertheless, it is
guaranteed that none of valid dependencies is lost, and, as new objects are added, the number of false consequences is
reduced (this is essentially the idea behind Attribute Exploration [14]). The situation is different if an erroneous object (data
table row) is added. The erroneous object may violate a data domain dependency. In this case, until the error is found and
corrected, we are not able to deduce all dependencies valid in the data domain from the implication base, no matter how
many error-free objects are added afterwards.

4. Finding errors

We introduce two different approaches to finding errors. The first one is based on inspecting the canonical base of a
context (base approach). When adding a new object to the context one may find all implications from the canonical base
of the context such that the implications are not respected by the intent of the new object. These implications are then
output as questions to an expert in form of implications. If at least one of these implications is accepted, the object intent
is erroneous. Since the canonical base is the most compact (in the number of implications) representation of all valid
implications of a context, it is guaranteed that minimal number of questions is asked and no valid dependencies of Class 1
are left out.

This approach is related to the procedure of pinpointing. Namely, in pinpointing an invalid implication is given and
the task is to find minimal subsets of rules such that the invalid implication is deducible (if any rule is removed from a
minimal subset then the invalid implication is not deducible anymore). In our setting we can consider an object intent as
a conjunction of attributes. The task is to find the maximal subsets of implications that are respected by the object intent,
or finding the minimal subsets of implications that are violated. Therefore, in contrast to pinpointing, the statement (the
conjunction of attributes) is not a consequence of the minimal subsets of implication. On the contrary, the statement violates
every subset. Afterwards we take the union of all minimal violated subsets and obtain a subset of implications where each
implication is violated by the new object.

Although this approach allows one to reveal all dependencies of Class 1, there are several issues. The problem of produc-
ing the canonical basis with known algorithms is intractable. Recent theoretical results [20,8,21,4] suggest that the canonical
base can hardly be computed with better worst-case complexity than that of the existing approaches [13]. One can use other
bases (for example, there has been recent progress in computing proper premises [30]), but the algorithms known so far are
still too costly and non-minimal bases do not guarantee that the expert is asked minimal sufficient number of questions.

S.O. Kuznetsov, A. Revenko / International Journal of Approximate Reasoning 63 (2015) 89–100 93
However, since we are only interested in implications corresponding to one object at a time, it may be not necessary
to compute the whole implication base. The second approach takes this fact into account. Let A ⊆ M be the intent of the
object under inspection; we separate it from the context. m ∈ A′′ iff ∀g ∈ G : A ⊆ g′ ⇒ m ∈ g′ , in other words, A′′ contains
the attributes common to all object intents containing A. The set of unit implications {A → b | b ∈ A′′ \ A} can then be
shown to the expert. If all implications are rejected, no attributes are forgotten in the new object intent. Otherwise, there
are missing attributes in the object intent. Unfortunately, this simple observation does not allow to correct all the errors in
implicative theory.

Example 2. Consider Case4 from Fig. 5. Case4 has set of attributes A = {has equal legs, has equal angles, all legs equal, at
least 3 different legs}. The closure A′′ in the context from Fig. 4 is equal to the set of all attributes M . Therefore, closure
approach would ask if the user has forgotten to add all the attributes that are still possible to add. The suggestion to add all
other attributes is not supported by any example in the context as there are no objects with all attributes. More than that,
such solution is not minimal in general. Therefore, such a solution is not satisfactory.

A more general description of the situation in the example above is the following. Let A ⊆ M be the intent of the
inspected object such that �g ∈ G : A ⊆ g′ . In this case A′′ = M and the implication A → A′′ \ A has an empty support. We
could try to solve this problem by allowing to ask only those questions that have a supporting example in the context.

Example 3. Consider again Case4 from Fig. 5. As support for every question is required only the following question would
be asked: has equal legs, has equal angles, at least 3 different legs → at least 3 different angles? Support: {Quadrangle with
2 equal legs and 2 equal angles, rectangular trapezium with 2 equal legs}. However, a smaller and more intuitive correction
would be to suggest the user to remove the attribute “at least 3 different legs”. If this is indeed the source of error then
even after adding the suggested attribute the error would not be eliminated and would impact the implicative theory.

At this point we conclude that it is necessary to be able to suggest corrections for errors of Class 2. Such errors may be
present if the object intent contains subset of attributes that none of the objects in the context has.

4.1. Crucial implications

Suppose we have a new object gn with intent A and we want to see whether A respects (is consistent with) the previous
knowledge given by the context, i.e., does not have errors of Class 1 or 2. In order to find errors of Class 1 we need to know,
whether, according to implications (implicative dependencies) of the context, the new object should have more attributes
than just A. If this is the case, there should be an implication B → c not respected by A: B ⊆ A, but c /∈ A. Similarly, in
order to find errors of Class 2, we look for implications B → c such that B ⊆ A, but c ∈ A. The following proposition shows
that we do not need to look for all such implications, but for a much smaller subset of them.

Proposition 1. Let K = (G, M, I), g′
n = A, A ⊆ M. Let

I(K)
A = {B → c | B ∈ MCA, c ∈ (B ′′ \ A) ∪ (A \ B)},

where MC A = {B ∈ CA | �C ∈ CA : B ⊂ C} and CA = {A ∩ g′ | g ∈ G}. The set I(K)
A contains (unit) implications with nonempty

support that are valid in K and not respected by A. If an implication (E → d), E ⊆ A, d ∈ (M \ A) ∪ A, with nonempty support is valid
in K, then there is an implication (B → d) ∈ I(K)

A such that E ⊆ B ⊆ A.

The last statement says that the set of implications I(K)
A is enough to deduce every attribute that can be deduced from

implications of the context with nonempty support. Implications from I(K)
A are called A-crucial in K. If ambiguity is excluded

we omit the upper index and write simply IA .

Proof. Let (B → c) ∈ IA , hence B ′ ⊆ c′ by the definition of implication. By the definition of IA one has B = A ∩ g′ for some
g ∈ G . Then B ⊆ g′ and by the antimonotonicity of (·)′ one has g′′ ⊆ B ′ . Hence, g′′ ⊆ B ′ ⊆ c′ and c′′ ⊆ g′′′ = g′ . Since c ∈ c′′ ,
one has c ∈ g′ . Since c ∈ g′ and B ′ ⊆ g , by the properties of (·)′ , one has (B ∪ c)′ = B ′ ∩ c′ ⊆ g . Hence, the support of B → c
contains g and is not empty. Consider the following possible cases:

1. c ∈ B ′′ \ A. Since B ′′ \ A � A implication B → c is not respected by A;
2. c ∈ A \ B . Since A \ B ⊆ A, one has c /∈ A and B → c is not respected by A.

Now let E → d be a valid implication not respected by A with a nonempty support. Then E ⊆ A, d /∈ A and there exists
g ∈ G such that E ⊆ g′, d ∈ g′ . Therefore, there exists BCA ∈ CA such that BCA = A ∩ g′ and E ⊆ BCA . Moreover, there
exists BMCA ∈MC A such that BCA ⊆ BMCA . By construction BMCA ⊆ A, therefore, E ⊆ BMCA ⊆ A. Consider the following
possible cases:

94 S.O. Kuznetsov, A. Revenko / International Journal of Approximate Reasoning 63 (2015) 89–100
1. d ∈ M . As E ⊆ BMCA by the properties of (·)′′ one has E ′′ ⊆ B ′′
MCA

. By the definition of the validity of an implication
one has d ∈ E ′′ , hence, d ∈ B ′′

MCA
. Therefore, (BMCA → d) ∈ IA ;

2. d ∈ M . Let c = d. For any B ∈ MC A there exists g∗ ∈ G such that B = A ∩ g′∗ . If E ⊆ g′∗ then by the validity of the
implication one has d ∈ g′∗ , hence, c /∈ g′∗ . Therefore, c /∈ B . As d /∈ A one has c ∈ A. Hence, c ∈ A \ B and d ∈ A \ B .
Therefore, (BMCA → d) ∈ IA . �

Proposition 2. For a new object g with intent A one has IA ≤ |G| × |M|.

Proof. By the definition of MC A it contains no more than |G| elements. For any A, B ⊆ M one has |B ′′| ≤ |M|, hence
|B ′′ \ A| ≤ |M| − |A|; |A \ B| ≤ |A|. Hence, |(B ′′ \ A) ∪ (A \ B)| ≤ |(B ′′ \ A)| + |(A \ B)| ≤ |M| − |A| + |A| = |M|. Therefore,
IA contains not more than |G| × |M| implications. �

According to Proposition 2 to check errors of Classes 1 and 2 one has to consider polynomially many implications instead
of exponentially many implications in the cardinality-minimum canonical base [20].

Proposition 1 allows one to design an algorithm for computing the set of questions (in form of implications) that can
help to reveal possible errors of Classes 1 and 2.

Proposition 3. Let g be a new object with intent A. IA can be computed in O (|G|2 × |M|) time.

Proof. Consider the following inspect_closure algorithm

Input: K = (G, M, I), A ⊆ M
Output: IA

1 if A′′ = A then
2 return ∅
3 Candidates = {object′ ∩ A | object ∈ G}
4 MaxCandidates = {C ∈ Candidates | �B ∈ Candidates: C ⊆ B}
5 Result = ∅
6 for Candidate in MaxCandidates do
7 Result.add({Candidate → d | d ∈ (Candidate′′ \ A ∪ A \ Candidate)})

8 return Result

Here A is the intent of the new object. In line 3 the algorithm computes the set of all subsets that are candidates for the
premises of crucial implications. In line 4 all non-maximal subsets are discarded. In lines 6 and 7 closures of the premises
are computed and the corresponding implications are added to the set of crucial implications. To estimate the worst-case
complexity of the algorithm, note that executing line 1 and line 3 take at most O(|G| × |M|) time, line 4 takes O(|M|) time
for each of O(|G|2) containment tests, and lines 6 and 7 take O(|G| × |M|) time for computing closures of at most O(|G|)
premises of crucial implications. Hence, the total worst-case time complexity is O(|G|2 × |M|). �
Example 4. Consider the context Km in Fig. 2. We compute I(Km)

Case2e for Case2 from the context Kem in Fig. 3. In order to com-
pute MCCase2e we first compute CCase2e . In order to do this we intersect Case2e with intent of every object in the context. For
example, Case2e ∩ (RT)′ = {has right angle}. However, Case2e ∩ (RT with 2 equal legs)′ = {has equal legs, has right angle} ⊇
{has right angle}, hence, {has right angle} will not be in MCCase2e . As {all angles equal, all legs equal} ⊆ Case2e and {all
angles equal, all legs equal} � (RT)′ we obtain the first implication from (1). As Case2e and RT′ differ in no more than |M|
attributes the length of every implication is not larger than |M|. Therefore, we have at most |G| implications of size at
most |M|. If we convert the implications to unit form the size of this set of implication will be limited by |G| × |M|. Finally,

ICase2e =
⎧⎨
⎩

has right angle,has equal legs → all angles equal,all legs equal
has right angle,has equal legs → at least 3 different legs,

at least 3 different angles

⎫⎬
⎭ (1)

The first implication is supported by Q with 2 equal legs and right angle and RT with 2 equal legs and not violated by
any object from Km. The second implication is supported by the same object and is also valid in Km. Both implications are
not respected by Case2.

If there are several new objects, the set of crucial implications for each new object is in general dependent on the order
of adding objects.

The following statement shows which additional questions should be asked in order to compensate for this dependency.

Proposition 4. Let g1 and g2 be new objects with intents A1 and A2 , respectively. Let K1 = (G ∪ g1, M, I ∪ {(g1, m) | m ∈ A1}). If
�g ∈ G : A1 ∩ A2 ⊆ g′ then I(K1) \ I(K) = {A2 ∩ A1 → m | m ∈ (A1 \ A2) ∪ (A2 \ A1)}, otherwise I(K1) = I(K) .
A2 A2 A2 A2

S.O. Kuznetsov, A. Revenko / International Journal of Approximate Reasoning 63 (2015) 89–100 95
Fig. 2. Minified context of convex quadrangles Km .

Fig. 3. Minified context of new quadrangles Kem .

Proof. By the definition of I(K)
A only maximal intersections may become premises of implications. Hence, if there exists

g ∈ G such that A1 ∩ A2 ⊆ g′ then no new implications can arise. However, if such g does not exist, the set of new
implications, by the definition of I(K)

A , is {(A1 ∩ A2) → m | m ∈ (A1 ∩ A2)
′′ \ A2 ∪ A2 \ (A1 ∩ A2)}. As A2 \ (A1 ∩ A2) = A2 \ A1

and, by assumption about maximal intersection, (A1 ∩ A2)
′′ = A1, the set of new implications is {A2 ∩ A1 → m | m ∈

(A1 \ A2) ∪ (A2 \ A1)}. �
Example 5. Consider contexts Km from Fig. 2 and Kem from Fig. 3. If first square is added to Km and then Case2 is checked
for errors, then the implication

has right angle, has equal legs, all legs equal, all angles equal → has equal angles

will be output to the user. However, if Case2 is checked before square is added, the implication above will not be asked as
there are no objects having the attributes “all legs equal” or “all angles equal” in the context.

Obviously, no more than |(A1 \ A2) ∪ (A2 \ A1)| additional questions may arise. It is also easy to see that additional
implications only arise in case where both new objects have maximal intents in K. However, as we do not require any
information about maximal intents in data domain, we have to be careful when adding an object with maximal intent. The
following corollary states clearly which implications should be considered in order to guarantee the absence of errors that
may affect the implication base.

Proposition 5. Let gn be a new object with intent A. The sets of implications I1 = {A → m | m ∈ M \ A, �g ∈ G : A ⊆ g′} and
I2 = {(A − a) → a | a ∈ A, �g ∈ G : (A − a) ⊆ g′} are valid in K, have empty support, and are not respected by A.

Note that if there exists g ∈ G such that A ⊆ g′ then both sets I1 and I2 are empty.

96 S.O. Kuznetsov, A. Revenko / International Journal of Approximate Reasoning 63 (2015) 89–100
Fig. 4. Context of convex quadrangles K.

Fig. 5. Context of tentative errors Ke.

Proof. By definition B → c is respected by N ⊆ M if B � N . By the definition of I1 and I2 all the premises are not contained
in any object intents from the context. Therefore, implications are valid, however, they are not supported by any of the object
intents.

As A ⊆ A, (M \ A) � A, implications from I1 are not respected by A. As ∀a ∈ A : (A − a) ⊆ A, a /∈ (M \ A), implications
from I2 are not respected by A. �

According to Proposition 5 the number of additional questions for new objects that have maximal intents cannot ex-
ceed |M|. As none of the questions have objects from context in support we suggest that maximal objects should be
checked “by hand”.

For the sake of compactness in what follows we present implications in non-unit form. The name inspect_base is
used to denote the function implementing base approach.

4.2. Example

Consider the following example with convex quadrangles. Formal context given by the cross-table in Fig. 4 contains
convex quadrangles and their properties. The context does not cover the domain completely, i.e. not all possible convex
quadrangle types are considered. Attributes “has equal legs” and “has equal angles” require at least two angles/legs of a
quadrangle to be equal. Some dependencies on attributes are trivial, e.g., if all angles in a quadrangle are equal, then this
quadrangle has equal angles.

S.O. Kuznetsov, A. Revenko / International Journal of Approximate Reasoning 63 (2015) 89–100 97
Four objects are in the context of tentative errors in Fig. 5. These objects are added to the context in Fig. 4 one at a time.

Inspecting Case1:

inspect_base
all legs equal → has equal angles, has equal legs

inspect_closure
has equal legs, at least 3 different angles → at least 3 different legs, all legs equal

has equal legs, all legs equal → has equal angles, at least 3 different angles

Both algorithms reveal possible errors in a similar manner, although there are obvious differences. In the output of
inspect_base the premises are smaller than in the output of inspect_closure. The latter also reveals dependencies
of Class 2. It is easy to see that all output implications hold in data domain. For example, if all legs are equal in a quadrangle,
it should have equal angles and should not have 3 different angles. Hence, this object should be recognized as an error, it
should be corrected to rhombus or to quadrangle with two equal legs.

Inspecting Case2:

inspect_base
all angles equal → has equal angles, has equal legs, has right angle

all legs equal → has equal angles, has equal legs

inspect_closure
has right angle, has equal legs, all legs equal, all angles equal → has equal angles

In this example we are able to ask even less questions to an expert using inspect_closure as with inspect_base.
This is the result of finding implications generated by maximal subsets of object’s intent. The intent of Case2 occurs in the
context (in the intent of Square), that is why we do not get any negative attributes in the output of inspect_closure.
Again, all implications are valid in data domain, therefore, Case2 is an error.

Inspecting Case3:

inspect_base
all angles equal → has equal angles, has equal legs, has right angle

all legs equal → has equal angles, has equal legs

inspect_closure
has equal angles, has right angle, at least 3 different legs, at least 3 different angles → all angles equal, all legs equal

has equal angles, has right angle, all legs equal, all angles equal → has equal legs, at least 3 different angles,
at least 3 different legs

In Case3 we get both implications from the output of inspect_base combined in one implication with a bigger
premise in the output of inspect_closure. In addition we obtain several implications with negative attributes. It is
easy to see that all implications hold in the data domain, therefore, Case3 is an error and should be corrected either to
rectangular trapezium or to square.

Inspecting Case4:

inspect_base
has equal angles, has equal legs, at least 3 different legs, all legs equal → has right angle, at least 3 different angles,
all angles equal

inspect_closure
has equal angles, has equal legs, all legs equal → at least 3 different legs

has equal angles, has equal legs, at least 3 different legs → at least 3 different angles, all legs equal

Case4 is a very special case where the corresponding implication from canonical base has empty support. In the output
of inspect_base we obtain all questions possible for this intent. As discussed above these questions are not based on
any information input so far. The reason for that is that Case4 has maximal intent in the context. So these questions could
also be found using Proposition 5. However, even if we add attributes “at least 3 different angles” and “all angles equal” and
reject the last implication we would not be able to recognize this object as an error. On the contrary inspect_closure
allows us to recognize errors of Class 2 and state that Case4 should be corrected to have the intent of rhombus or quadrangle
with two equal legs and two equal angles.

98 S.O. Kuznetsov, A. Revenko / International Journal of Approximate Reasoning 63 (2015) 89–100
Fig. 6. Comparison of runtime on synthetic contexts in semilog scale.

5. Experiment

Below the results of experiments on synthetic data are presented. The experiments were conducted as follows: all objects
are first taken one by one out from the context and then added as new objects; all the possible errors of Classes 1 and 2
are found and output. In this experiment we wanted to compare the runtime of the algorithms.

An FCA package for Python was used for implementation [1]. For computing the canonical base an optimized algorithm
based on Next Closure was used [25]. All tests described below were run on computer with Intel Core i7 1.6 GHz
processor and 4 Gb of RAM running Linux Ubuntu 11.10 x64.

In Fig. 6 the results of running both algorithms on synthetic contexts are presented. For each context the number of
objects is equal to 50. Parameter d represents the density of the context, i.e. the probability of having a cross in the
cross-table representing the relation. This result is presented in the semi-logarithmic scale. It is easy to note that with the
growth of the number of attributes and the density, the difference between runtime of two algorithms grows as well.

Another experiment was conducted to test the quality of finding errors by the introduced method. The information about
dependencies between negative attributes is not reflected in the implication base. Therefore, more implications are usually
violated by objects having more attributes in their intent. Small intents usually violate only few implications. However, in
this experiment we aim at finding not only the errors affecting the implication base; therefore, it is necessary to level out
the shift between larger and smaller intents. For this purpose in the following experiments a slight modification of the
introduced method is used. The complementary context to a context K = (G, M, I) is defined as Kc := (G, M, (G × M) \ I).
The method applied to the complementary context will output implications with only negative attributes in the premise.
Running the introduced method on both original context and complementary context yields better results. Note that impli-
cations with both positive and negative attributes will not be generated.

The experiments were conducted in the following settings. An object was picked up from a context, from one to three
errors were randomly introduced into the intent of the object. The method was used to find possible errors in the object.
If all the erroneous attributes were in the conclusion of the unit implications with the same premise then the errors were
marked as found. In this case all the erroneous attributes are contained in one question to the user. Afterwards the object
already without errors is returned to the context and the next object is picked up. We considered three contexts from the
UCI repository [11]: SPECT, house-votes-84 and kr-vs-kp. Therefore, nine experiments were conducted. In every ex-
periment 1000 objects (with possible repetitions) were picked up one after another. In Table 1 the results of the experiment
are presented.

The more objects there are in the context, the less is the number of all valid implications of the context (which does not
mean the smaller size of the implication base). Therefore, less invalid implications could be output to the user. In SPECT
intents are very diverse (there are only 5.78 irreducible objects per attribute on average) that is why not more than three
implications on average are output and bad ratio of found errors is obtained. In house-votes-84 intents are more similar,
that is why we have more questions per object. The ratio of found errors for one error is relatively high, however, it quickly
drops with the increase of errors, as the number of irreducible objects is small. In kr-vs-kp there are much more objects
per attribute and the results for two and three errors at a time are much better. However, if the user is able to correctly
answer all unit implications even better results can be achieved. In this case the user may correct first errors and repeat

S.O. Kuznetsov, A. Revenko / International Journal of Approximate Reasoning 63 (2015) 89–100 99
Table 1
Error finding experiment carried out on three contexts from UCI.

Context name |G| |G| after reducing |M|
SPECT 267 133 23
house-votes-84 232a 104 17
kr-vs-kp 3198 453 36b

Number of
errors per object

Errors found Found/all
ratio

Total number of
implications

Implications
per object

(a) SPECT
1 548 0.548 2298 2.41
2 242 0.242 2753 2.80
3 131 0.131 2703 2.71

(b) house-votes-84
1 712 0.712 9780 11.4
2 217 0.217 14 018 14.7
3 71 0.071 18 276 18.4

(c) kr-vs-kp
1 786 0.786 7520 8.47
2 393 0.393 12 863 13.2
3 247 0.247 18 322 18.3

a All objects containing missing values were removed.
b Attribute 15 was removed due to many-valuedness.

the procedure having already only one error. In these experiments the error-finding process was considered successful only
if there is one implication suggesting all the needed corrections at once.

It is worth noting that the chance of random guess in predicting all errors in an object description is only 1/(|M|n) if
there are n errors as compared to 50% for the classification task.

The results testify to the obvious advantage of applying inspect_closure approach to inspect_base approach in
terms of runtime.

6. Conclusion

A method for finding errors in implicative theories was introduced. The method uses some techniques based on Formal
Concept Analysis. As opposed to finding the canonical (cardinality minimal) base of implications, which can be very time
consuming due to intrinsic intractability, the proposed algorithm terminates in polynomial time. Moreover, after checking
maximal object descriptions (object intents) “by hand” it is possible to find all errors of two considered types or prove
their absence. Computer experiments show that in practice the proposed method works much faster than that based on the
generation of the implication base.

Acknowledgements

The first author was supported by the Basic Research Program of the National Research University Higher School of
Economics, project “Mathematical models, algorithms, and software for knowledge discovery in structured and text data”.
The second author was supported by German Academic Exchange Service (DAAD). We thank Bernhard Ganter and Sergei
Obiedkov for discussion and useful remarks.

References

[1] N. Romashkin, A. Revenko, Python package for formal concept analysis, https://github.com/artreven/fca.
[2] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider, The Description Logic Handbook: Theory, Implementation and Applications,

2010.
[3] F. Baader, R. Penaloza, B. Suntisrivaraporn, Pinpointing in the description logic EL+ , in: KI 2007: Advances in Artificial Intelligence, Springer, 2007,

pp. 52–67.
[4] M.A. Babin, S.O. Kuznetsov, Computing premises of a minimal cover of functional dependencies is intractable, Discrete Appl. Math. 161 (6) (2013)

742–749.
[5] V.G. Blinova, D.A. Dobrynin, V.K. Finn, S.O. Kuznetsov, E.S. Pankratova, Toxicology analysis by means of JSM-method, Bioinformatics 19 (2003)

1201–1207.
[6] A. Buzmakov, E. Egho, N. Jay, S.O. Kuznetsov, A. Napoli, C. Raissi, On projections of sequential pattern structures (with an application on care tra-

jectories), in: Jan Outrata, Manuel Ojeda-Aciego (Eds.), 10th International Conference on Concept Lattices and Their Applications, CLA 2013, 2013,
pp. 199–208.

[7] F. Dau, Implications of properties concerning complementation in finite lattices, in: D. Dorninger, et al. (Eds.), Proceedings of the 58th Workshop on
General Algebra “58. Arbeitstagung Allgemeine Algebra”, Vienna, Austria, June 3–6, 1999, in: Contrib. Gen. Algebra, vol. 12, Verlag Johannes Heyn,
Klagenfurt, 2000, pp. 145–154.

https://github.com/artreven/fca
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib626161646572323031306465736372697074696F6Es1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib626161646572323031306465736372697074696F6Es1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib6261616465723230303770696E706F696E74696E67s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib6261616465723230303770696E706F696E74696E67s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib4B757A6E6574736F7632303133436F6D70s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib4B757A6E6574736F7632303133436F6D70s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib426C696E6F766132303033s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib426C696E6F766132303033s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib636C613133s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib636C613133s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib636C613133s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib44617532303030s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib44617532303030s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib44617532303030s1

100 S.O. Kuznetsov, A. Revenko / International Journal of Approximate Reasoning 63 (2015) 89–100
[8] F. Distel, B. Sertkaya, On the complexity of enumerating pseudo-intents, Discrete Appl. Math. 159 (6) (2011) 450–466.
[9] W. Fan, J. Li, S. Ma, N. Tang, W. Yu, Towards certain fixes with editing rules and master data, Proc. VLDB Endow. 3 (1) (2010) 173–184.

[10] F. Baader, B. Sertkaya, Usability issues in description logic knowledge base completion, in: S. Rudolph, S. Ferré (Eds.), 7th International Conference on
Formal Concept Analysis, ICFCA 2009, in: LNAI, vol. 5548, 2009, pp. 1–21.

[11] A. Frank, A. Asuncion, UCI machine learning repository, http://archive.ics.uci.edu/ml, 2010.
[12] W.J. Frawley, G. Piatetsky-Shapiro, C.J. Matheus, Knowledge discovery in databases: an overview, AI Mag. 13 (3) (1992) 57.
[13] B. Ganter, Two basic algorithms in concept analysis, in: L. Kwuida, B. Sertkaya (Eds.), Formal Concept Analysis, in: Lect. Notes Comput. Sci., vol. 5986,

Springer, Berlin, Heidelberg, 2010, pp. 312–340.
[14] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer, 1999.
[15] J.-L. Guigues, V. Duquenne, Familles minimales d’implications informatives résultant d’un tableau de données binaires, Math. Sci. Hum. 24 (95) (1986)

5–18.
[16] Y.K. Jain, V. Suryawanshi, A new approach for handling null values in web log using KNN and tabu search KNN, Int. J. Data Min. Knowl. Manage.

Process 1 (5) (September 2011) 9–19.
[17] H.A. Kautz, M.J. Kearns, Bart Selman, Reasoning with characteristic models, in: The Eleventh National Conference on Artificial Intelligence, AAAI-93,

1993, pp. 1–14.
[18] M. Kaytoue, S.O. Kuznetsov, A. Napoli, S. Duplessis, Mining gene expression data with pattern structures in formal concept analysis, Inf. Sci. 181 (2011)

1989–2001.
[19] M. Kirchberg, E. Leonardi, Y.S. Tan, S. Link, R.K.L. Ko, B.-S. Lee, Formal concept discovery in semantic web data, in: 10th International Conference on

Formal Concept Analysis, ICFCA 2012, in: LNAI, vol. 7278, 2012, pp. 164–179.
[20] S.O. Kuznetsov, On the intractability of computing the Duquenne–Guigues base, J. Univers. Comput. Sci. 10 (8) (Aug. 2004) 927–933.
[21] S.O. Kuznetsov, S. Obiedkov, Some decision and counting problems of the Duquenne–Guigues basis of implications, Discrete Appl. Math. 156 (11)

(2008) 1994–2003.
[22] L. Kwuida, C. Pech, H. Reppe, Generalizations of boolean algebras. An attribute exploration, Math. Slovaca 56 (2) (2006) 145–165.
[23] T. Meyer, K. Lee, R. Booth, J.Z. Pan, Finding maximally satisfiable terminologies for the description logic ALC, in: Proceedings of the National Conference

on Artificial Intelligence, vol. 21, AAAI Press/MIT Press, Menlo Park, CA/Cambridge, MA/London, 2006, p. 269.
[24] B. Mirkin, Mathematical Classification and Clustering, Kluwer Academic Publisher, 1996.
[25] S. Obiedkov, V. Duquenne, Attribute-incremental construction of the canonical implication basis, Ann. Math. Artif. Intell. 49 (1–4) (April 2007) 77–99.
[26] J. Rasmussen, The role of hierarchical knowledge representation in decisionmaking and system management, IEEE Trans. Syst. Man Cybern. 2 (1985)

234–243.
[27] A. Revenko, Automatized construction of implicative theory of algebraic identities of size up to 5, in: Cynthia Vera Glodeanu, Mehdi Kaytoue, Christian

Sacarea (Eds.), Formal Concept Analysis, in: Lect. Notes Comput. Sci., vol. 8478, Springer International Publishing, 2014, pp. 188–202.
[28] A. Revenko, S.O. Kuznetsov, Finding errors in new object intents, in: CLA 2012, CEUR, 2012, pp. 151–162.
[29] J.M. Rodriguez-Jimenez, P. Cordero, M. Enciso, A. Mora, A generalized framework to consider positive and negative attributes in formal concept analysis,

in: CLA 2014, 2014.
[30] U. Ryssel, F. Distel, D. Borchmann, Fast computation of proper premises, in: Amedeo Napoli, Vilem Vychodil (Eds.), International Conference on Concept

Lattices and Their Applications, INRIA Nancy – Grand Est and LORIA, 2011, pp. 101–113.
[31] E.-L. Silva-Ramírez, R. Pino-Mejías, M. López-Coello, M.-D. Cubiles-de-la Vega, Missing value imputation on missing completely at random data using

multilayer perceptrons, Neural Netw. 24 (1) (January 2011) 121–129.
[32] Y.L. Simmhan, D. Gannon, B. Plale, A survey of data provenance techniques, Technical report iub-cs-tr618, Computer Science Department, Indiana

University, Bloomington, 2005.
[33] Q. Song, M. Shepperd, A new imputation method for small software project data sets, J. Syst. Softw. (2007) 1–24.
[34] P. Valtchev, R. Missaoui, R. Godin, Formal concept analysis for knowledge discovery and data mining: the new challenges, in: Concept Lattices, Springer,

2004, pp. 352–371.

http://refhub.elsevier.com/S0888-613X(15)00088-2/bib44697374656C3230313161s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib46616E3230313061s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib62733039s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib62733039s1
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib667261776C6579313939326B6E6F776C65646765s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib47616E74657231393834s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib47616E74657231393834s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib47616E74657231393939s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib44757175656E6E6531393836s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib44757175656E6E6531393836s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib4A61696E3230313161s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib4A61696E3230313161s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib4B6175747A3139393361s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib4B6175747A3139393361s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib6B6B6E643131s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib6B6B6E643131s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib6B6C746C6B6C3132s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib6B6C746C6B6C3132s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib4B757A6E6574736F76323030344F6Es1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib4B757A6E6574736F7632303038536F6D65s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib4B757A6E6574736F7632303038536F6D65s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib4B777569646132303036s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib6D657965723230303666696E64696E67s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib6D657965723230303666696E64696E67s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib6D69726B696E313939366D617468656D61746963616Cs1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib4F626965646B6F7632303037s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib7261736D757373656E31393835726F6C65s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib7261736D757373656E31393835726F6C65s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib726576656E6B6F323031346175746F6D6174697A6564s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib726576656E6B6F323031346175746F6D6174697A6564s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib526576656E6B6F3230313263s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib726F6472696775657A67656E6572616C697A6564s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib726F6472696775657A67656E6572616C697A6564s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib52794469423131s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib52794469423131s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib53696C76612D52616D6972657A3230313161s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib53696C76612D52616D6972657A3230313161s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib737067s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib737067s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib536F6E673230303761s1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib76616C746368657632303034666F726D616Cs1
http://refhub.elsevier.com/S0888-613X(15)00088-2/bib76616C746368657632303034666F726D616Cs1

	Interactive error correction in implicative theories
	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.3 Contributions

	2 Main deﬁnitions
	3 Errors in implicative theories
	4 Finding errors
	4.1 Crucial implications
	4.2 Example

	5 Experiment
	6 Conclusion
	Acknowledgements
	References

