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Abstract This paper presents several definitions of “optimal patterns” in triadic data and
results of experimental comparisonoffive triclustering algorithmson real-world and synthetic
datasets. The evaluation is carried over such criteria as resource efficiency, noise tolerance
and quality scores involving cardinality, density, coverage, and diversity of the patterns. An
ideal triadic pattern is a totally dense maximal cuboid (formal triconcept). Relaxations of this
notion under consideration are: OAC-triclusters; triclusters optimal with respect to the least-
square criterion; and graph partitions obtained by using spectral clustering. We show that
searching for an optimal tricluster cover is an NP-complete problem, whereas determining
the number of such covers is #P-complete. Our extensive computational experiments lead
us to a clear strategy for choosing a solution at a given dataset guided by the principle of
Pareto-optimality according to the proposed criteria.
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1 Introduction and related work

Clustering is an activity for finding homogeneous chunks in data. In machine learning, clus-
tering represents an important branch related to what is referred to as unsupervised learning.
The most popular idea of cluster relates to instances in a feature space. A cluster in this space
is of a subset of data points that are relatively close to each other and relatively far from other
data points. Feature space clustering algorithms are a popular tool in marketing research,
bioinformatics, banking, image analysis, web mining, etc. With the growing popularity of
more recent data sources such as biomolecular techniques and Internet, other than instance-
to-feature data structures attract attention of researchers. Among these data structures is data
matrix in which all the entries refer to values measured in the same scale. One example is
gene expression data, entries of which show levels of gene material captured in a polymerase
reaction. Another example would be relational data to express presence–absence of a relation
among several itemsets such as:

– Bibsonomydata frombibsonomy.org (Benz et al. 2010) capturing a ternary relation among
three sets: (i) users, (ii) bookmarks, (iii) tags (topics);

– Movies database IMDb (www.imdb.com) capturing, say, a binary relation of “relevance”
between a set of movies and a set keywords or a ternary relation between sets of movies,
keywords and celebrities;

– job banks comprising at least four itemsets (jobs, job descriptions, job seekers, seeker
skills).

Although the concept of a feature space cluster remains much relevant to such same-scale
data, other cluster approaches gain popularity too. Among the latter is the concept of bicluster
in a data matrix representing a relation between two itemsets (Mirkin 1996, p. 296). Rather
than a single subset of entities, a bicluster comprises two subsets of different itemsets. To pick
these subsets up, no concept of distance applies, but rather the data submatrix corresponding
to them is taken into account. Generically, the larger the values in the submatrix, the better
interconnection between the subsets, the more relevant is the corresponding bicluster. At the
relational data presence–absence data represented by binary 1/0 values this criterion amounts
to the proportion of unities in the submatrix, its “density”: the larger, the better. Therefore, a
bicluster is an ultimate expression of the interconnection at the presence–absence data where
the density is 1, that is, all the within-submatrix entries in a bicluster are unities. A bicluster
of the density 1 is referred to as a formal concept if its constituent subsets cannot be increased
without a drop in the density value, i.e. a maximal rectangle of 1s in the input matrix w.r.t.
permutations of its rows and columns (Ganter andWille 1999). This name relates to a specific
interpretation of the itemsets: one is supposed to be a set of attributes, the other to be a set of
objects; then subsets constituting a formal concept can be interpreted as the concept’s intent
and extent, respectively. The intent is a set of attributes defining the concept, whereas the
extent is the set of objects having all attributes from the set.

Obviously, biclusters form a set of clumps in the data so that further learning can be orga-
nized within them. The biclustering techniques and Formal Concept Analysis machinery
are being developed independently in independent communities using different mathemati-
cal frameworks. Specifically, the mainstream in Formal Concept Analysis is based on order
structures, lattices and semilattices (Ganter andWille 1999; Poelmans et al. 2013a), whereas
biclustering is based more on conventional optimization approaches and matrix algebra
frameworks (Madeira and Oliveira 2004; Eren et al. 2013). Yet these different frameworks
considerably overlap in applications. Among those: finding co-regulated genes over gene
expression data (Madeira and Oliveira 2004; Besson et al. 2005; Barkow et al. 2006; Tarca
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et al. 2007; Hanczar and Nadif 2010; Kaytoue et al. 2011; Eren et al. 2013), prediction of
biological activity of chemical compounds (Blinova et al. 2003; Kuznetsov and Samokhin
2005; DiMaggio et al. 2010; Asses et al. 2012), summarization and classification of texts
(Dhillon 2001; Cimiano et al. 2005; Banerjee et al. 2007; Ignatov and Kuznetsov 2009;
Carpineto et al. 2009), structuring websearch results and browsing navigation in Information
Retrieval (Carpineto and Romano 2005; Koester 2006; Eklund et al. 2012; Poelmans et al.
2012), finding communities in two-mode networks in Social Network Analysis (Duquenne
1996; Freeman 1996; Latapy et al. 2008; Roth et al. 2008; Gnatyshak et al. 2012) and Rec-
ommender Systems (Boucher-Ryan and Bridge 2006; Symeonidis et al. 2008; Ignatov and
Kuznetsov 2008; Nanopoulos et al. 2010; Ignatov et al. 2014).

It is worth noting that Formal Concept Analysis helped to algebraically rethink several
models and methods in Machine Learning such as version spaces (Ganter and Kuznetsov
2003), learning from positive and negative examples (Blinova et al. 2003; Kuznetsov 2004),
and decision trees (Kuznetsov 2004). It was also shown that concept lattice is a perfect search
space for learning globally optimal decision trees (Belohlávek et al. 2009). However, since
early 90s both supervised and unsupervised machine learning techniques and application
based on Formal Concept Analysis were introduced in the machine learning community. For
example in Carpineto andRomano (1993), Carpineto andRomano (1996) therewere reported
results on the concept lattice based clustering in GALOIS system that suited for information
retrieval via browsing. Fu et al. (2004) performed a comparison of seven FCA-based classi-
fication algorithms. Rudolph (2007) and Tsopzé et al. (2007) propose independently to use
FCA to design a neural network architecture. In Outrata (2010), Belohlávek et al. (2014)
FCA was used as a data preprocessing technique to transform the attribute space to improve
the results of decision tree induction. Visani et al. (2011) proposed Navigala, a navigation-
based approach for supervised classification, and applied it to noisy symbol recognition.
Lattice-based approaches were also successfully used for finding frequent (closed) itemsets
(Pasquier et al. 1999; Kuznetsov and Obiedkov 2002; Zaki and Hsiao 2005) as well as on
data with complex descriptions such as graphs or trees for classification (Kuznetsov and
Samokhin 2005; Zaki and Aggarwal 2006) and sequential pattern mining (Zaki 2001; Buz-
makov et al. 2013). Recent survey on theoretical advances and applications of FCA can be
found in (Poelmans et al. 2013a, b).

In some applications the structure of the phenomenon under consideration can be rep-
resented only in part or represented improperly when using relations between two aspects
only. For example, according to Mirkin and Kramarenko (2011) biclusters found at a dataset
relating most popular movies and keywords according to Movies database are rather trivial;
adding one more aspect, genre, makes the obtained clumps more sensible, see, for example,
bicluster and tricluster containingmovie “TwelveAngryMen” from (Mirkin andKramarenko
2011) Table 1.

Therefore, it can be useful to extend the concepts and techniques for bicluster and For-
mal Concept Analysis to data of relation among more than two datasets. A few attempts in
this direction have been published in the literature. For example, Zhao and Zaki (2005) pro-
posed Tricluster algorithm for mining biclusters extended by time dimension to real-valued
gene expression data. A triclustering method was designed in Li and Tuck (2009) to mine
gene expression data using black-box functions and parameters coming from the domain. In
the Formal Concept Analysis framework, theoretic papers (Wille 1995; Lehmann and Wille
1995) introduced the so-called Triadic Formal Concept Analysis. In Krolak-Schwerdt et al.
(1994), triadic formal concepts apply to analyze small datasets in a psychological domain.
Paper (Jäschke et al. 2006) proposed rather scalable method for mining frequent tricon-
cepts in Folksonomies. Simultaneously, a less efficient method on mining closed cubes in
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Table 1 Bicluster and tricluster from Mirkin and Kramarenko (2011)

Clump Movie-keyword-genre

Bicluster {12 Angry Men (1957), To Kill a Mockingbird (1962), Witness for the
Prosecution (1957)}, {Murder, Trial}, {n/a }

Tricluster {12 Angry Men (1957), Double Indemnity (1944), Chinatown (1974), The
Big Sleep (1946), Witness for the Prosecution (1957), Dial M for Murder
(1954), Shadow of a Doubt (1943) }, { Murder, Trial, Widow, Marriage,
Private detective, Blackmail, Letter}, {Crime, Drama, Thriller, Mystery,
Film-Noir}

ternary relations was proposed by Ji et al. (2006). There are several recent efficient algo-
rithms for mining closed ternary sets (triconcepts) and even more general algorithms than
Trias. Thus, Data-Peeler (Cerf et al. 2009) is able to mine n-ary formal concepts and its
descendant mines fault-tolerant n-sets (Cerf et al. 2013); the latter was compared with DCE
algorithm for fault-tolerant n-sets mining fromGeorgii et al. (2011). The paper (Spyropoulou
et al. 2014) generalises n-ary formal concept mining to multi-relational setting in data-
bases.

The goal of this paper is to investigate the extensions of the concepts of bicluster and
formal concept to the case of data representing a yes/no relation among three, rather than
two, sets of entities. Specifically, in this paper we consider the case of data on yes/no
relation among three sets of entities and the concepts of tricluster and formal triconcept.
This allows us to bring forward both lattice-based and linear algebraic approaches, For-
mal Concept Analysis using lattices of closed sets (see Ganter and Wille 1999; Lehmann
and Wille 1995; Jäschke et al. 2006) and density/approximation based methods from linear
algebra (see Mirkin and Kramarenko 2011). The formal triconcepts refer to such subsets
of each of the three sets of entities that all the within-triples are in “yes” relation, whereas
the algebraic methods allow some of the triples be not related. Each of the approaches
has its advantages and disadvantages, but they have never been compared experimen-
tally.

We describe a set of triclustering techniques proposed by members of the team in different
projects within Formal Concept Analysis and/or bicluster analysis perspectives (OAC- box
(Ignatov et al. 2011), Tribox (Mirkin and Kramarenko 2011), SpecTric (Ignatov et al.
2013) and a novel OAC- prime algorithm. This novel algorithm, OAC- prime, overcomes
computational and substantive drawbacks of the earlier formal-concept-like algorithms. In
our description, we take steps to relate the formal triconcepts to the known problem of
covering a graph, which allows us to prove several intractability statements for them; we also
estimate the complexity of each of the algorithms under comparison. In our spectral approach
(SpecTric algorithm) we rely on an extension of the well-known reformulation of a bipartite
graph partitioning problem to the spectral partitioning of a graph (see, e.g. Dhillon 2001).
Some authors also made attempts to extend this approach to the case of tripartite graphs (Gao
et al. 2005; Liu et al. 2010; Nanopoulos et al. 2009), but not to triadic hypergraphs, so our
approach bridges the gap. Then we proceed to experimental comparison of the triclustering
algorithms, including the Triadic Formal Concept Analysis Trias algorithm. In this, we
propose new developments in the following components of the experiment setting:

1. Evaluation criteria In our study we use the following six criteria: the average density,
the coverage, the diversity and the number of triclusters, and the computation time and
noise tolerance for the algorithms.
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2. Benchmark datasets We use triadic datasets from publicly available internet data as
well as synthetic datasets with various noise models.

A similar experimental comparison was conducted in Gnatyshak et al. (2013), yet on
a much smaller scale of the experiments. Mathematical properties of the algorithms, the
investigation of the optimization problem for the search of optimal patterns, NP- and #P-
completeness results, and pairwise criteria graphs are reported in the current paper for the
first time as well.

The remainder is organised as follows. In Sect. 2 we give main definitions of Formal
Concept Analysis and describe Trias algorithm for triadic concept generation. Section 3
introduces the notion of OAC tricluster, as a relaxation of the triadic formal concept, and
presents two associated OAC-triclustering methods OAC- box and OAC- prime. Section 4
introduces the notion of box tricluster based on the conventional least-squares criterion and
describes the TriBox approach. In Sect. 5 we present SpecTric triclustering approach based
on the adaptation of spectral clustering to the triadic setting. Section 6 describes the evaluation
criteria for tricluster collections and comparison of the algorithms. It also contains results on
the complexity of a related problem, the optimal tricluster cover search. Section 7 describes
the datasets selected or generated for our experiments. Section 8 presents the results obtained
in the experimentation section and their discussion. The last section concludes the paper and
indicates some further research directions.

2 Triadic Formal Concept Analysis and TRIAS method

2.1 Binary and n-ary contexts

First, we recall some basic notions from Formal Concept Analysis (FCA) Ganter and Wille
(1999). Let G and M be sets, called the set of objects and attributes, respectively, and let I
be a relation I ⊆ G × M : for g ∈ G, m ∈ M , gIm holds iff the object g has the attribute
m. The triple K = (G, M, I ) is called a (formal) context.

A triadic context K = (G, M, B, Y ) consists of sets G (objects), M (attributes), and B
(conditions), and ternary relation Y ⊆ G×M × B (Lehmann andWille 1995). An incidence
(g,m, b) ∈ Y shows that object g has attribute m under condition b.

An n-adic context is an (n + 1)-tuple K = (X1, X2, . . . , Xn, Y ), where Y is an n-ary
relation between sets X1, . . . , Xn (Voutsadakis 2002).

2.2 Concept forming operators and formal concepts

If A ⊆ G, B ⊆ M are arbitrary subsets, then the Galois connection between (2G ,⊆) and
(2M ,⊆) is given by the following derivation (prime) operators:

A′ = {m ∈ M | gIm for all g ∈ A} ,

B ′ = {g ∈ G | gIm for all m ∈ B} .
(1)

If we have several contexts, the derivative operator of a context (G, M, I ) is denoted by
(.)I .

The pair (A, B), where A ⊆ G, B ⊆ M , A′ = B, and B ′ = A is called a (formal) concept
(of the context K )with extent A and intent B (in this case we have also A′′ = A and B ′′ = B).

The concepts, ordered by (A1, B1) ≥ (A2, B2) ⇐⇒ A1 ⊇ A2 form a complete lattice,
called the concept lattice B(G, M, I ).
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2.3 Formal concepts in triadic and in n-ary contexts

For convenience, a triadic context is denoted by (X1, X2, X3, Y ). A triadic context K =
(X1, X2, X3, Y ) gives rise to the following diadic contexts

K
(1) = (X1, X2 × X3, Y (1)), K(2) = (X2, X1 × X3, Y (2)), K(3) = (X3, X1 × X2, Y (3)),

where gY (1)(m, b) :⇔ mY (2)(g, b) :⇔ bY (3)(g,m) :⇔ (g,m, b) ∈ Y . The derivation
operators (primes or concept-forming operators) induced by K

(i) are denoted by (.)(i). For
each induced dyadic context we have two kinds of such derivation operators. That is, for
{i, j, k} = {1, 2, 3} with j < k and for Z ⊆ Xi and W ⊆ X j × Xk , the (i)-derivation
operators are defined by:

Z 
→ Z (i) = {
(x j , xk) ∈ X j × Xk |xi , x j , xk are related by Y for all xi ∈ Z

}
,

W 
→ W (i) = {
xi ∈ Xi |xi , x j , xk are related by Y for all (x j , xk) ∈ W

}
.

Formally, a triadic concept of a triadic context K = (X1, X2, X3, Y ) is a triple
(A1, A2, A3) of A1 ⊆ X1, A2 ⊆ X2, A3 ⊆ X3, such that for every {i, j, k} = {1, 2, 3}
with j < k we have (A j × Ak)

(i) = Ai . For a certain triadic concept (A1, A2, A3), the
components A1, A2, and A3 are called the extent, the intent, and the modus of (A1, A2, A3).
It is important to note that for interpretation of K = (X1, X2, X3, Y ) as a three-dimensional
cross table, according to our definition, under suitable permutations of rows, columns, and
layers of the cross table, the triadic concept (A1, A2, A3) is interpreted as a maximal cuboid
full of crosses. The set of all triadic concepts of K = (X1, X2, X3, Y ) is called the concept
trilattice and is denoted by T(X1, X2, X3, Y ). However, the concept trilattice does not form
partial order by extent inclusion since it is possible for the same triconcept extent to have
different combinations of intent and modus components (Wille 1995; Lehmann and Wille
1995).

One may introduce n-adic formal concepts without n-ary concept forming operators.
The n-adic concepts of an n-adic context (X1, . . . , Xn, Y ) are exactly the maximal n-tuples
(A1, . . . , An) in 2X1 × · · · × 2Xn with A1 × · · · × An ⊆ Y with respect to component-wise
set inclusion (Voutsadakis 2002). The notion of n-adic concept lattice can be introduced in
the similar way to the triadic case (Voutsadakis 2002).

2.4 NextClosure algorithm extended

Trias (Jäschke et al. 2006) is a method for finding (frequent) triadic formal concepts, that
are closed 3-sets. Since we consider triadic formal concepts as starting point of our search
of optimal tripatterns and absolutely dense triclusters, this method was added to the study.

Formally, Trias solves the following problem:

Problem 1 (Mining all frequent tri-concepts) Let K = (G, M, B, I ) be a triadic context,
and let g-minsup, m-minsup, b-minsup ∈ [0, 1]. The task of mining all frequent tri-concepts
consists in determining all triconcepts (X, Y, Z)ofKwith |X | ≤ τG , |Y | ≤ τM , and |Z | ≤ τB ,
where τG = |G| · g-minsup, τM = |M | · m-minsup, and τB = |B| · b-minsup.

Trias is based on the NextClosure algorithm (Ganter 1987; Ganter and Wille 1999)
that enumerates all formal concepts of the dyadic context in lectic order, the lexicographic
order on bit vectors describing subsets of objects (attributes, respectively).

In Trias this approach is extended to the triadic case and minimal support constraints are
added (triclusters with too small extent, intent or modus are skipped).

The Trias algorithm was designed to mine so-called folksonomies (Vander Wal 2007) in
resource sharing systems, e.g. in social bookmarking systems like delicious and bibsonomy.
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Formally, a folksonomy is a tricontext F = (U, T, R, H), U × T × R ⊆ H , where U is a
set of users, T is a set of tags, and R is a set of resources. A triple (u, t, r) ∈ H means that
the user u assigned the tag t to the resource r .

Trias has a precursor, Tripat algorithm (Krolak-Schwerdt et al. 1994), for analysing
triadic data from psychological studies.

The pseudo-code for the TRIAS algorithm with some fixed inconsistencies is provided
(Algorithm 1) below.

Algorithm 1 TRIAS
Input: K = (G, M, B, I ) — tricontext

τG , τM , τB —minimal support thresholds
Output: T = {(X, Y, Z)}
1: T = ∅
2: Ĩ := {(g, (m, b)) | (g,m, b) ∈ I }
3: (X, J ) := First FreqCon((G, M × B, Ĩ ), τG )

4: repeat
5: if |J | ≥ τM τB then
6: (Y, Z) := First FreqCon((M, B, J ), τM )

7: repeat
8: if |Z | ≥ τB then

9: if X = (Y × Z) Ĩ then
10: add (X, Y, Z) to T
11: end if
12: end if
13: until not Next FreqCon((Y, Z), (M, B, J ), τM )

14: end if
15: until not Next FreqCon((X, J ), (G, M × B, Ĩ ), τG )

The Trias algorithm uses two other functions FirstFreqCon and NextFreqCon as
subroutines. First it composes the new binary relation Ĩ := {(g, (m, b)) | (g,m, b) ∈ I } (line
2) and then finds the first frequent concept in the corresponding formal context (G, M×B, Ĩ )
(line 3) w.r.t. lectic order on concept extents and minimal support τG .

As the NextClosure algorithm the procedure NextFreqCon requires a total order on
elements of the set of objects (or attributes), G (or M). We then consider G as a subset
of natural numbers and the lectic order on sets forms a total order on it (equivalent to the
lexicographic order of bit vectors representing those sets). To find the next concept we define
for A ⊆ G and i ∈ G the set A ⊕ i = (A ∩ {1, . . . , i1}) ∪ {i}). By applying the closure
operator (·)′′ to A ⊕ i the NextFreqCon computes for a given A the set C = (A ⊕ i)′′.
This set C is the lectically next extent, in case A <i C holds, that is i is the smallest element
in which A and C differ, and i ∈ C . The only difference between original NextClosure
and NextFreqCon is that of the latter additionally checks whether the computed extent C
fullfills the minimal support criterion.

The wrapper function FirstFreqCon tries to find the first frequent concept of (G, M ×
B, Ĩ ) as (∅′′,∅′) and if it is not succeeded, it passes the infrequent concept (∅′′,∅′) to
NextFreqCon to check the next lectic one. If NextFreqCon returns the frequent con-
cept (X, J ) of the context (G, M × B, Ĩ ) (line 3), then Trias extracts the new context
(M, B, J ) (line 6) and search frequent concepts in it with the corresponding minimal support
thresholds τM and τB . In case of passing all the check the triple ((Y × Z) Ĩ ), Y, Z) is the
frequent triconcept of (G, M, B, I ) (line 10).
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Function 2 FirstFreqCon
Input: K = (G, M, I ) – tricontext;

τ – minimal support
Output: (A, B)

1: B := ∅′
2: A := B′
3: if |A| < τ then
4: Next FreqCon((A, B),K, τ )

5: end if
6: return (A, B)

Function 3 NextFreqCon
Input: (A, B) – formal concept (global variable w.r.t. the wrapper function FirstFreqCon);

K = (G, M, I ) – tricontext;
τ – minimal support

Output: f lag ∈ {T RUE, FALSE}
1: i = max(G)

2: repeat
3: if i /∈ A then
4: B := ((A ∩ {1, . . . , i − 1}) ∪ i)′
5: C := B′
6: if C \ A do not contain elements less than i then
7: A := C
8: if |A| ≥ τ then
9: return T RUE
10: else
11: return Next FreqCon((A, B),K, τ )

12: end if
13: end if
14: end if
15: i = prev(i)
16: until i is the least element of G
17: return FALSE

The main advantages of the Trias algorithm are as follows: It does not generate the same
triconcept more than once and it uses the main memory space almost only for the input data
storage.

Let us discuss the time complexity of the Trias algorithm. The function Next FreqCon
((X, J ), (G, M × B, Ĩ ), τG = 0) produces the set of all concepts of K Ĩ in time
O(|G|2|M ||B||L Ĩ |) with polynomial delay O(|G|2|M |) and Next FreqCon((Y, Z),

(M, B, J ), τM = 0) produces the set of all concepts of KJ in time O(|M |2|B||L J |)
with polynomial delay O(|M |2|B|), where L Ĩ and L J are the sets of all concepts of
corresponding contexts K Ĩ and KJ respectively. These worst-case bounds are based on
those of NextClosure algorithm reported in Kuznetsov and Obiedkov (2002). Note
that the upper bound values of L Ĩ and L J are 2min{|G|,|M||B|} and 2min{|M|,|B|} for the
case where each of these lattices is isomorphic to a Boolean lattice of the correspond-
ing size. However this case is a rare one taking into account high sparsity of real
datasets.

In paper (Biedermann 1998) the upper bound size of concept trilattice T(X, X, X, YX ) is
provided when YX = X × X × X \ (x, x, x), where x ∈ X : |T| = 3|X |. Hence, the worst-case
upper bound for an arbitrary tricontext K = (G, M, B, I ) is |T| = 3min{G,M,B}.
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3 Relaxed object-attribute-condition patterns: OAC triclusters

Guided by the idea of finding scalable and noise-tolerant triconcepts, we had a look at
triclustering paradigm in general for a triadic binary data, i.e. for tricontexts as input datasets.

3.1 Ternary patterns and their density

Let K = (G, M, B, I ) be a triadic context, where G, M , and B are sets, and I is a ternary
relation: I ⊆ G × M × B.

Suppose X , Y , and Z are some subsets of G, M , and B respectively.

Definition 1 Suppose K = (G, M, B, I ) is a triadic context and Z ⊆ G, Y ⊆ M , Z ⊆ B.
A triple T = (X, Y, Z) is called an OAC-tricluster. Traditionally, its components are called
(tricluster) extent, (tricluster) intent, and (tricluster) modus, respectively.

The density of a tricluster T = (X, Y, Z) is defined as the fraction of all triples of I in
X × Y × Z :

ρ(T ) := |I ∩ (X × Y × Z)|
|X ||Y ||Z | (2)

Definition 2 The tricluster T is called dense iff its density is not less than some predefined
threshold, i.e. ρ(T ) ≥ ρmin .

The collection of all triclusters for a given tricontext K is denoted by T .
Since we deal with all possible cuboids in Cartesian product G × M × B, it is evident

that the number of all OAC-triclusters, |T |, is equal to 2|G|·|M|·|B|. However not all of them
are supposed to be dense, especially for real data which are often quite sparse. Below we
discuss two possible OAC-tricluster definitions, which give us an efficient way to find within
polynomial time a number of (dense) triclusters not greater than the number |I | of triples in
the initial data.

3.2 Bounding operator box

Here let us define the box operators and describe box OAC-triclustering. We use a slightly
different introduction of the main TCA notions because of their further technical usage.

Derivation (prime) operators for a triple (g̃, m̃, b̃) ∈ I from triadic context K can be
defined as follows:

g̃′ := { (m, b) | (g̃,m, b) ∈ I } (3)

m̃′ := { (g, b) | (g, m̃, b) ∈ I } (4)

b̃′ := {
(g,m) | (g,m, b̃) ∈ I

}
(5)

(g̃, m̃)′, (g̃, b̃)′, (m̃, b̃)′ prime operators can be defined the same way.

(g̃, m̃)′ := { b | (g̃, m̃, b) ∈ I } (6)

(g̃, b̃)′ := {
m | (g̃,m, b̃) ∈ I

}
(7)

(m̃, b̃)′ := {
g | (g, m̃, b̃) ∈ I

}
(8)

123

Author's personal copy



280 Mach Learn (2015) 101:271–302

Fig. 1 g addition condition

Now for a triple (g̃, m̃, b̃) ∈ I let us define box operator g̃� (m̃� and b̃� are introduced
in the same way):

g̃� := {
g | ∃m(g,m) ∈ b̃′ ∨ ∃b(g, b) ∈ m̃′} (9)

m̃� := {
m | ∃g(g,m) ∈ b̃′ ∨ ∃b(m, b) ∈ g̃′} (10)

b̃� := {
b | ∃g(g, b) ∈ m̃′ ∨ ∃m(m, b) ∈ g̃′} (11)

Definition 3 Suppose K = (G, M, B, I ) is a triadic context. For a triple (g,m, b) ∈ I a
triple T = (g�,m�, b�) is called a box operator based OAC-tricluster. Traditionally, its
components are respectively called extent, intent, and modus.

Let us elaborate on the structure of box operator based triclusters. Consider the triple
(g̃, m̃, b̃) ∈ I from K = (G, M, B, I ). Then object g will be added to g̃� iff {(g, m̃, b) | b ∈
B ∧ (g, m̃, b) ∈ I } �= ∅ ∨ {(g,m, b̃) |m ∈ M ∧ (g,m, b̃) ∈ I } �= ∅. It is clear that this
condition is equivalent to the one in Eq. (9), and can be easily illustrated (Fig. 1): if at least
one of the elements from “grey” cells is an element of I , then g is added to g̃�.

The proposedOAC-tricluster definition has a useful property (see Proposition 1): for every
triconcept in a given tricontext there exists a tricluster of the same tricontext containing the
triconcept. It means that there is no information loss, since we keep all the triconcepts in the
resulting tricluster collection.

Proposition 1 (Ignatov et al. 2013)LetK = (G, M, B, Y ) be a triadic context andρmin = 0.
For every Tc = (Ac, Bc,Cc) ∈ T(G, M, B, Y ) there exists a box OAC-tricluster T =
(A, B,C) ∈ T�(G, M, B, Y ) such that Ac ⊆ A, Bc ⊆ B,Cc ⊆ C.

3.3 Prime operator applied to pairs

The second author of the paper proposedPrimeOAC-triclusteringwhich extends the biclus-
tering method from Ignatov et al. (2012) to the triadic case. It uses prime operators (Eq. 6)
to generate triclusters.

Definition 4 Suppose K = (G, M, B, I ) is a triadic context. For a triple (g,m, b) ∈ I a
triple T = (

(m, b)′, (g, b)′, (g,m)′
)
is called a prime operator based OAC-tricluster. Its

components are called respectively extent, intent, and modus.

Prime based OAC-triclusters are more dense than box operator based ones. Their structure
is illustrated in Fig. 2: every element corresponding to the “grey” cell is an element of I .
Thus, prime operator based OAC-triclusters in a three-dimensional matrix form contain an
absolutely dense cross-like structure.

A similar property holds for the prime based OAC-triclusters:
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Fig. 2 Prime operator based tricluster structure

Proposition 2 Let K = (G, M, B, Y ) be a triadic context and ρmin = 0. For every
Tc = (Ac, Bc,Cc) ∈ T(G, M, B, Y ) there exists a prime OAC-tricluster T = (A, B,C) ∈
T′(G, M, B, Y ) such that Ac ⊆ A, Bc ⊆ B,Cc ⊆ C.

3.4 Tricluster generating algorithms

3.4.1 OAC-triclustering based on box operators

The idea of box OAC-triclustering is to enumerate all triples of the ternary relation I for a
contextK generating a box operator based tricluster for each. If generated tricluster T was not
added to the set of all triclusters T� on previous steps, then T is added to T�. It is possible to
implement hash functions for triclusters in order to significantly decrease computation time
by simplifying the comparison of triclusters. A minimal density threshold can be used as
well.

A pseudo-code for such an algorithm can be as follows (Algorithm 4):

Algorithm 4 Algorithm for box OAC-triclustering
Input: K = (G, M, B, I ) — tricontext;

ρmin — density threshold.
Output: T� = {T = (X, Y, Z)}
1: T := ∅
2: for all g ∈ G do
3: PrimesObj[g] := g′
4: end for
5: for all m ∈ M do
6: Primes Attr [m] := m′
7: end for
8: for all b ∈ B do
9: PrimesCond[b] := b′
10: end for
11: for all (g,m, b) ∈ I do
12: T = (g�,m�, b�)

13: T key = hash(T )

14: if T key /∈ T�.keys ∧ ρ(T ) ≥ ρmin then
15: T�[T key] = T
16: end if
17: end for
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Proposition 3 For a given formal context K = (G, M, B, I ) and ρmin ≥ 0 the largest
number of box OAC-triclusters is equal to |I |; all OAC-triclusters can be generated in time
O(|I | · (|M ||B| + |G||B| + |G||M |)) if ρmin = 0 or O(|I ||G||M ||B|) if ρmin > 0.

Note that a post-processing step of elimination of duplicate triclusters would require an
additional time |I |log(|I |) to be added to the time estimates in the Proposition 3.

3.4.2 OAC-triclustering based on primes of pairs

A pseudo-code for the prime OAC-triclustering algorithm is provided (Algorithm 5).

Algorithm 5 Algorithm for prime OAC-triclustering
Input: K = (G, M, B, I ) — tricontext;

ρmin — density threshold
Output: T = {T = (X, Y, Z)}
1: T := ∅
2: for all (g,m) : g ∈ G,m ∈ M do
3: PrimesObj Attr [g,m] = (g,m)′
4: end for
5: for all (g, b) : g ∈ G,b ∈ B do
6: PrimesObjCond[g, b] = (g, b)′
7: end for
8: for all (m, b) : m ∈ M ,b ∈ B do
9: Primes AttrCond[m, b] = (m, b)′
10: end for
11: for all (g,m, b) ∈ I do
12: T = (Primes AttrCond[m, b], PrimesObjCond[g, b], PrimesObj Attr [g,m])
13: T key = hash(T )

14: if T key /∈ T .keys ∧ ρ(T ) ≥ ρmin then
15: T [T key] := T
16: end if
17: end for

To avoid duplicate tricluster generation we suggest the usage of hash functions.
A similar property can be proved.

Proposition 4 For a given formal context K = (G, M, B, I ) and ρmin ≥ 0 the largest
number of box OAC-triclusters is equal to |I |; all prime OAC-triclusters can be generated
in time O(|I | · (|G| + |M | + |B|)) if ρmin = 0 or O(|I ||G||M ||B|) if ρmin > 0.

So, from the time complexity point of view the prime OAC-triclustering may have an
advantage in comparison with the box OAC-triclustering at ρmin = 0.

4 Approximate triclusters: TriBox method

4.1 Individual tricluster approximation model

The TriBox method (Mirkin and Kramarenko 2011) implements an optimization approach
for tricluster generation. SupposeK = (G, M, B, I ) is a triadic context. The idea is to select
some triple of I , take it for the initial tricluster, and then to modify its extent, intent, and
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modus so that they covered a significant part of the context while maintaining high density.
TriBox aims at finding a set of triclusters T = {Tt = (Xt , Yt , Zt )} thatmaximize criterion 12.

The resulting triclusters compose locally optimal solution for the trade-off problem
between the density ρ and the volume of various possible triclusters.

f (T ) = ρ(T )2|X ||Y ||Z | (12)

For convenience, triadic context K is represented as a third order boolean tensor R with
components:

rgmb =
{
1, if (g,m, b) ∈ I ;
0, if (g,m, b) /∈ I.

(13)

A set of triclusters T = {Tt = (Xt , Yt , Zt )} forms the following model of data:

rgmb = max
t=1,...,|T | λt [(g,m, b) ∈ Xt × Yt × Zt ] + λ0 + εgmb (14)

where:

1. λt is a parameter (some measure for the tricluster Tt )
2. [(g,m, b) ∈ Xt × Yt × Zt ] equals to 1, if (g,m, b) ∈ Xt × Yt × Zt is true, and to 0

otherwise
3. λ0 is a constant, 0 ≤ λ0 ≤ 1, plays the role of an intercept in linear data models
4. εg,m,b is a residual

This model 14 involves the operation of maximization rather than summation. To fit 14
with a relatively small number of boxes, assume λ0 to be constant and specified before the
fitting of the model. Then the model can be rewritten by putting r∗

gmb = rgmb − λ0 on the
left, so that λ0 becomes a similarity shift value rather than an intercept.

We apply here the one-by-one fitting strategy (Mirkin 1996) so that each box tricluster
(Xt , Yt , Zt ) with λt is found as the most deviant from the “middle”, that is, minimizing the
residuals in a single cluster model (with a constant λ0)

r∗
gmb = rgmb − λ0 = λ[(g,m, b) ∈ T ] + egmb (15)

4.2 Equivalent criterion and parameters

Let us initially assume λ0 = 0 so that r∗
gmb = rgmb. Box cluster (Xt , Yt , Zt ) with λt ,

minimizing the least squares criterion

L2 =
∑

gmb

(
r∗
gmb − λ [(g,m, b) ∈ T ]

)2
(16)

over real λ and binary [(g,m, b) ∈ T ], must lead to optimal λ being equal to the within-box
average:

λ =
∑

g∈X,m∈Y,b∈Z
r∗
gmb/|X ||Y ||Z | (17)

which is the proportion of ones within the box minus λ0, and, assuming that the λ is optimal,
criterion L2 in (16) admits the following decomposition:

L2 =
∑

gmb

r∗2
gmb − λ2|X |Y ||Z | (18)
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thus implying the following criterion to maximize

g(X, Y, Z) = λ2|X ||Y ||Z | (19)

According to (18), this criterion expresses the contribution of the box (X, Y, Z) to the data
scatter�gmbr∗2

gmb which is useful to watch how closely the box follows the data. On the other
hand, criterion (19) combines two contrasting criteria for a box to be optimal: (a) the largest
area, (b) the largest proportion of within-box unities. If restricted to a within-box non-zero
option, the criterion (19) would lead to the formal concepts of the largest sizes, |X ||Y ||Z |,
as the only maximizers.

Its optimization will lead to λ = ρ(T ) − λ0 (density of T minus λ0). Therefore, f (T ) in
criterion (12) is a particular case of g(T ) when λ0 = 0.

4.3 Local optimization: TriBox method

Fitting model (14) can be done by applying algorithm TriBox starting from each of the
triples and retaining only different and most contributing solutions. Let us remind that the
contribution of a box bicluster is but the value of criterion (19).

The value of difference D(e∗) = g(X ′, Y, Z) − g(X, Y, Z), where X ′ differs from X by
the state of just one entity e∗ ∈ G so that e∗ either belongs to X ′ if e∗ /∈ X or does not, if
e∗ ∈ X , is expressed with the formula

D(e∗) =
[
r2(e∗, Y, Z) + 2ze∗r(X, Y, Z)r(e∗, Y, Z) − ze∗r2(X, Y, Z)/|X |]

((|X | + ze∗)|Y ||Z |) (20)

Here ze∗ = 1, if e∗ is added to X and ze∗ = −1 otherwise, r(X, Y, Z) is the sum of all
the entries in R∗ over (g,m, b) ∈ X × Y × Z (i.e. r(X, Y, Z) = |I ∩ X × Y × Z | in case
λ0 = 0), and r(e∗, Y, Z) is the sum of all the r∗

e∗mb over m ∈ Y and b ∈ Z . A symmetric
expression holds for the changes in box (X, Y, Z) over e∗ ∈ Y or e∗ ∈ Z . This leads to the
following tricluster finding algorithm.

The pseudo-code for TriBox algorithm is given in Algorithm 6.
At λ0 = 0 the value of λ can be interpreted as a box tricluster density. The resulting box

tricluster is provably rather contrast:

Proposition 5 If box tricluster (X, Y, Z) is found with the TriBox algorithm then, for any
entity outside the box, its average density on the two counterpart entity sets from {X, Y, Z},
is less than the half of the within-box density λ; in contrast, for any entity belonging to the
box, its average density on the counterpart entity sets is greater than or equal to the half of
the within-box density λ.

Proposition 6 For a given formal contextK = (G, M, B, I ) and λ0 = 0 the largest number
of box triclusters found by TriBox is equal to |I |, all box triclusters can be generated in
time O(|I | · ((|G| + |M | + |B|)2|G||M ||B|)).

Once again, by using hash functions to avoid duplicate triclusters an additional time
complexity item O(|I |log|I |), for the last loop, should be added.

In comparison to Trias, and box and prime OAC- triclustering, Tribox is able to
work with real-valued data without sufficient modifications (one only needs to change the
initialization step at line 3).
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Algorithm 6 TriBox algorithm
Input: K = (G, M, B, I ) — tricontext;

λ0 — similarity shift value parameter for K
Output: T = {T = (X, Y, Z)}
1: T := ∅
2: for all (g,m, b) ∈ G × M × B do
3: r∗

gmb = [(g,m, b) ∈ G × M × B] − λ0
4: end for
5: for all (g,m, b) ∈ I do
6: T = (g,m, b)
7: repeat
8: e∗ = arg max

e∈G�M�B D(e)

9: D∗ = D(e∗)

10: if D∗ > 0 then
11: if e∗ inside T then
12: remove e∗ from T
13: else
14: add e∗ to T
15: end if
16: end if
17: until D∗ < 0
18: T key = hash(T )

19: if T key /∈ T .key then
20: T [T key] := T
21: end if
22: end for

5 Spectral approach extended to triclustering: SpecTric method

5.1 Adjacency matrix and Laplace transformation for the triadic hypergraph

Spectral triclustering method (Ignatov et al. 2013) is based on the spectral graph partition
approach. The idea is to represent the given triadic context as a tripartite graph and then
recursively divide it into partitions minimizing some objective function through the solution
of a corresponding eigenvalue problem. To find an optimal partitioning spectral clustering
uses the second smallest eigenvector of the Laplacian matrix (Fiedler 1973).

Let us elaborate on this technique. SupposeK = (G, M, B, I ) is a triadic context. First we
need to transform K into tripartite graph Γ = 〈V, E〉. Since I is a ternary relation it is only
possible to representK as a tripartite hypergraph without the information loss. The following
transformation technique is considered: V := G �M � B, for each triple (g,m, b) ∈ I edges
{g,m}, {g, b} and {m, b} are added to E to form an undirected non-weighted tripartite graph
with the adjacency matrix A.

As the result some additional triples will be added to I after inverse transformation.
However, these triples will be added only in “dense” areas of I thus possibly filling missing
values and “smoothing” tricontext for methods aiming at finding formal triconcepts. Thus
this technique is acceptable for the problem.

We can rearrange the rows and columns of A first placing object vertices, then attribute
and condition vertices:

A =
⎛

⎝
0 EGM EGB

EMG 0 EMB

EBG EBM 0

⎞

⎠ (21)
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After the transformation Laplacian matrix is built for Γ :

Li j =

⎧
⎪⎨

⎪⎩

degree(vi ), if i = j

−1, if i �= j and ∃ edge (vi , v j )

0, otherwise

(22)

where vi is the i th vertex of V.
For the triadic context K Laplacian matrix will have the following form:

L =
⎛

⎝
DG −EGM −EGB

−EMG DM −EMB

−EBG −EBM DB

⎞

⎠ (23)

where E are the adjacency submatrices, D are diagonal matrices containing degrees of the
corresponding vertices on the main diagonal.

The second minimal eigenvector of L is an optimal solution to a relaxed version of
the optimal partition problem for Γ (finding the minimal set Ẽ ⊆ E so that the graph
Γ̃ = (V, E \ Ẽ) is not connected). The sign of each component of this vector indicates one
of the 2 new connected components. The solution vector v is used to partition the graph by
placing the nodes with greater than zero vi values into one partition and those with less than
zero values into another.

In order to avoid partitioning of dangling vertices or small subgraphs the generalized
eigenvalue problem must be considered (Shi and Malik 2000):

Lv = λDv (24)

where D is a diagonal matrix containing vertices’ degrees on the main diagonal.
Every partition can then be recursively split by solving a new eigenvalue problem for the

corresponding submatrix.
Also, some minimum size constraint can be used to avoid too deep partitioning. Since

spectral triclustering is not able to generate the same tricluster more than once, it is not
necessary to use hash functions to avoid duplicates.

5.2 The spectral triclustering algorithm

The pseudo-code for SpecTric is provided (Algorithm 7).
The possible constraints below can be introduced to select triclusters of acceptable quality.

1. Cvoid constraint: in the tricluster T = (X, Y, Z) corresponding to A at least one of the
parts, extent, intent or modus is empty

2. C¬si ze constraint: Size(T ) < smin , where Size(X, Y, Z) = |X |+|Y |+|Z |
|G|+|M|+|B| or the other

tricluster size-related measure.

The method recursively splits the input graph (matrix, context) into two parts, checks the
constraints for both parts, if one of them is false, then the previous subgraph (submatrix,
subcontext) is added as a tricluster to T and the corresponding branch is cancelled.

The standard matrix diagonalization methods require O(|V |3) operations, where |V | is
the number of nodes in the graph, and impractical for large datasets. However, we can
take advantage of the sparsity of the graph using iterative methods (Lanczoc or Arnoldi
algorithms Golub and van Loan 1989), especially since only one vector should be computed.
The complexity of Lanczos type algorithm is only O(k|E |), where |E | is the number of edges
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Algorithm 7 SpecTric algorithm
Input: A — a corresponding adjacency matrix of the input triadic context K = (G, M, B, I )

smin — size threshold
Output: T = {(X, Y, Z)}
1: (AL ,AR) = Spectral Parti tioning(A)

2: if Cvoid (AL ) ∨ C¬si ze(AL , smin) ∨ Cvoid (AR) ∨ C¬si ze(AR , smin) then
3: T .Add(Matri xT oTricluster(A))

4: else
5: SpecTric(AL )

6: SpecTric(AR)

7: end if

in the graph and k is the number of iterations required for the convergence (see Shi andMalik
2000; Golub and van Loan 1989). In practice, usually k � √|V |.

Taking this into account, the worst case complexity of the SpecTric algorithm vary from
O(k|E ||V |) to O(|E ||V |3), or in terms of formal tricontext entities, from O(k|I |(|G| +
|M | + |B|)) to O(|I |(|G| + |M | + |B|)3), depending on eigenvalue problem solver and data
sparsity. Since we deal with a recursive partition scheme, the number of generated triclusters
cannot be greater than |I |, however, in the worst case, the number of cuts performed is |I |−1
since SpecTric cannot guarantee equally sized triclusters at each split.

6 Criteria for evaluation of triclusters

6.1 Criteria for cluster sets

To evaluate the quality of the whole tricluster collection obtained by a triclustering method,
we propose using the following four criteria: the number of triclusters, average density,
coverage and the diversity.
Cardinality andDensityFor a given tricluster collectionT cardinality is trivially the number
of its members |T |. The average collection density is ρav(T ) = 1

|T |
∑

T∈T ρ(T ).
Diversity is an important measure in Information Retrieval for diversified search results and
in Machine Learning for ensemble construction (Tsymbal et al. 2005).

To define diversity we use a binary function that equals to 1 if the intersection of triclusters
Ti and T j is not empty, and 0 otherwise.

intersect (Ti , T j ) = [
GTi ∩ GT j �= ∅ ∧ MTi ∩ MT j �= ∅ ∧ BTi ∩ BT j �= ∅]

(25)

It is also possible to define intersect for the sets of objects, attributes and conditions. For
instance, intersectG(Ti , T j ) is equal to 1 if triclusters Ti and T j have nonempty intersection
of their extents, and 0 otherwise.

intersectG(Ti , T j ) = [
GTi ∩ GT j �= ∅]

(26)

Now we can define diversity of the tricluster set T :

diversi t y(T ) = 1 −
∑

j
∑

i< j intersect (Ti , T j )

|T |(|T |−1)
2

(27)

The diversity for the sets of objects (attributes or conditions) is similarly defined.
Coverage is defined as a fraction of the triples of the context (alternatively, objects, attributes
or conditions) included in at least one of the triclusters of the resulting set.
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More formally, let K = (G, M, B, I ) be a tricontext and T be the associated triclustering
set obtained by some triclustering method, then coverage of T :

coverage(T ) =
∑

(g,m,b)∈I

⎡

⎣(g,m, b) ∈
⋃

(X,Y,Z)∈T
X × Y × Z

⎤

⎦ /|I | (28)

The coverage of the object set G by the tricluster collection T is defined as follows:

coverageG(T ) =
∑

g∈G

⎡

⎣g ∈
⋃

(X,Y,Z)∈T
X

⎤

⎦ /|G| (29)

Coverage of attribute or condition sets can be defined analogously. These measures may
have sense when one of the dimensions has high importance, e.g. in case where objects are
users (clients) and one does not want to miss even a few of them.

6.1.1 Complexity of an optimal tricluster set

The discrete optimization task of “finding an optimal tricluster solution” can be formalized
in the following way:

For a given tricontext K = (G, M, B, I ⊆ G × M × B), minimal density ρmin ∈ [0, 1]
and coverage level α ∈ [0, 1] find

Topt ∈ Arg min
Tcov⊆T

(|Tcov|,−Diversi t y(Tcov)) (30)

subject to constraints

(1) ∀T ∈ Tcov : ρ(T ) ≥ ρmin,

(2) ∀(g,m, b) ∈ I ∃(X, Y, Z) ∈ Tcov : (g,m, b) ∈ X × Y × Z
or
(2′) coverage(Tcov) ≥ α, where 0 ≤ α ≤ 1,
(3) ∀(X, Y, Z) ∈ Tcov : |X | ≥ minsupG , |Y | ≥ minsupM , |Z | ≥ minsupB .

Condition (1) requires all triclusters to be dense. Condition (2′) is a relaxed (and more
general) version of (2) which requires all initial triples from I to be covered. Condition (3)
helps to avoid trivial triclusters of small size.

There are two possible ways to find an optimal tricluster set according to the introduced
criteria:

1. To devise an algorithm that tries to find directly an optimal triclustering solution (w.r.t.
a particular tricluster definition) for a given tricontext.

2. To reduce the resulting collection obtained by one of the triclustering methods to some
of its subsets from the corresponding Pareto set.

Let us concentrate on the second approach, because it can help to better understandwhether
there is an efficient way to find a good tricluster subset among the obtained triclustering
solutions.

Assume that we already have a tricluster collection T for a given tricontext K obtained
by some of the discussed triclustering techniques. We can also assume that the triclusters
are dense and large enough, but their collection has an excessive size because of triclusters
overlapping and can be reduced without violation condition (2). For the sake of simplicity
we omit the second optimized criteria, Diversity of the tricluster collection, thus coming to
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the problem of optimal tricluster cover, the computational complexity of which is discussed
below.

Let us recall some decision problems and introduce auxiliary constructions.
A vertex cover of a graph Γ = (V, E) is a subset of vertices V1 ⊆ V such that for every

edge (u, v) ∈ E we have v ∈ V1 and/or u ∈ V1.

Definition 5 For an arbitrary graph Γ = (V, E) the associated bipartite graph is a graph
Δ = (X ∪ Y, E1), where |X | = |V |, vertices from X are in one-to-one correspondence to
vertices from V and vertices from Y are in one-to-one correspondence to edges from E ;
(xi , y j ) ∈ E1 if the vertex vi ∈ V is incident to the edge e j ∈ E .

We say that in a bipartite graph Δ = (X ∪ Y, E) a set of vertices X1 ⊆ X dominates
vertices from Y1 ⊆ Y if each vertex from Y1 is adjacent to a vertex from X1.

Lemma 1 Let Γ = (V, E) be a graph and Δ be its associated bipartite graph. Γ has a
vertex cover of size k iff in the bipartite graph 
 there is a pair (Z , Y ), where Z ⊆ X, Z
dominates vertices from Y and |Z | = k.

Proof The proof directly follows from the construction of the graph Δ. ��
Definition 6 Tricluster bipartite cover graph corresponding to a bipartite graph Δ =
(X ∪ Y, E1) is the graph �(
) = (T ∪ I, J ), where all triclusters from T are in in
one-to-one correspondence with vertices from X , all triples (g,m, b) ∈ I are in one-to-
one correspondence with vertices from Y and (T, (g,m, b)) ∈ J if (T, y(g,m,b)) ∈ E1.
The internal tricluster structure T = (GT , MT , BT ) is defined by adjacent edges in J , i.e.
∀(g,m, b) ∈ I∃T ∈ T : (g,m, b) ∈ GT × MT × BT .

Without loss of generality let T = X .

Lemma 2 Let Δ be a bipartite graph given by Definition 6 and Θ(Δ) be the corresponding
tricluster bipartite cover graph. Then the following two statements are equivalent:

1. There is a pair (Z , Y ) of sets of vertices of graph Δ such that Z ⊆ X and Z dominates
all vertices from Y .

2. Z is a tricluster cover of the tricluster bipartite cover graph Θ(Δ), i.e. for every
(g,m, b) ∈ I there exist T = (GT , MT , BT ) ∈ Z such that (g,m, b) ∈ GT ×MT × BT .

Proof The proof directly follows from the construction of the graph Θ(Δ). ��
Theorem 1 The following “minimal tricluster cover” problem is NP-complete.

Instance: Triadic context K = (G, M, B, I ), tricluster bipartite cover graph Θ =
(T , I, J ), and positive integer k.
Question: Does there exist a tricluster cover Tcov ⊆ T such that |Tcov| ≤ k?

Proof The problem obviously belongs to NP. For each potential solution, i.e., a subset of
triclusters S ⊆ T , one needs to check whether each (g,m, b) from I belongs to at least one
tricluster T from T and the size of T is less or equal to k. The first condition can be verified
within O(|I | · |T | · (|G| + |M | + |B|)) using tricontext or within O(|I | · |T |) using Θ .

Now we reduce the problem of minimal vertex cover from Garey and Johnson (1979) to
that of ours.

Instance: Graph Γ = (G, V ), positive integer k ≤ |V |
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Question: Does there exist a set W ⊆ V such that |W | ≤ k and v ∈ W or u ∈ W for
each e = (u, v)) ∈ E?

Applying Definition 5, we construct a bipartite graphΔ associated with Γ . By Lemma 1 a
vertex cover of size k of graph Γ corresponds, in graph Δ, to a pair (Z , Y ) such that |Z | = k
and Z dominates the set Y . By Lemma 2, this pair corresponds to a tricluster cover of Θ(Δ)

with the number of triclusters k formed by k vertices of the first part ofΔ, X , by Definition 6.
The reduction is realized within O(E) time. ��
Theorem 2 The following problem “the number of all minimal tricluster covers” is #P-
complete.

Proof We reduce the #P-complete problem of determining the number of inclusion-minimal
vertex covers (Valiant 1979) to our problem.

Input: Graph Γ = (V, E).
Output: #{W ∈ V | ((u, v) ∈ E)) → (u ∈ A) ∨ (v ∈ A)) holds for A =
W but not for any A ⊂ W }.

By construction of Lemma 1, an inclusion-minimal vertex cover in graph Γ corresponds
to a pair (Z , Y ) of subsets of vertices of the bipartite graph Δ associated with Γ and Z is
an inclusion-minimal set of vertices from X that dominates Y . Conversely, each pair of this
form corresponds to an inclusion-minimal vertex cover in graph Γ . By Lemma 2 the pairs of
this form are in one-to-one correspondence with tricluster covers of a tricontext cover graph
corresponding to the bipartite graph Δ. The inclusion minimality of the set of vertices Z
corresponds to the minimality of the tricluster cover. ��
6.2 Criteria for algorithms

Noise tolerance The noise tolerance of an algorithm has been defined as the ability to build
triclusters similar to initial cuboids. We used the Jaccard similarity coefficient to find the
most similar tricluster t for the given cuboid c and their similarity. Total similarity has been
defined as follows:

σ(C, T ) = 1

|C|
cC∑

c=c1

max
t=t1,...,tT

|Gc ∩ Gt |
|Gc ∪ Gt |

|Mc ∩ Mt |
|Mc ∪ Mt |

|Bc ∩ Bt |
|Bc ∪ Bt | (31)

Speed Although the computation time is not of prime importance for us, we provide the
computation time for each algorithm on different analyzed datasets.
Complexity In Table 2 we summarize time complexities of the considered algorithms.

7 Selection of triadic datasets for experiments

The experiments on the computation time, cardinality, coverage, density, and diversity is
conducted on both real and synthetic datasets (Table 3) including the series of experiments
on noise tolerance for the latter ones (Sect. 7.2).

7.1 Real datasets

Mobile operators We select 16 mobile operators with maximal revenue1. As attributes we
consider countries where a particular mobile operator acts. A network type (technology) is

1 The information was collected from open sources on the Internet. Supplementary materials and several
datasets are available at http://bit.ly/triMLData.
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Table 2 Time complexity of the algorithms

Algorithm Time complexity Comment

OAC (�) O(|I | · (|M ||B| + |G||B| + |G||M |)) ρmin = 0

O(|I ||G||M ||B|) ρmin > 0

OAC (′) O(|I | · (|G| + |M | + |B|)) ρmin = 0

O(|I ||G||M ||B|) ρmin > 0

SpecTric O(k|I |(|G| + |M | + |B|)) For Lancsoz and Arnoldi algorithm on sparse data k �
|G| + |M | + |B|

O(|I |(|G| + |M | + |B|)3) For general diagonalization methods

TriBox O(|I | · (|G| + |M | + |B|)2|G||M ||B|)
Trias O(|G|2|M |3|B|2|L Ĩ |max |L J |) The upper bound values of L Ĩ and L J are

2min{|G|,|M||B|} and 2min{|M|,|B|}. However, it is a
rare case in practice since the data are usually sparse

Table 3 Contexts for the experiments with 5 chosen evaluation measures

Context |G| |M | |B| # Triples Density

Uniform 30 30 30 2660 0.0985

Gaussian 30 30 30 3604 0.1335

IMDB 250 795 22 3818 0.00087

BibSonomy 51 924 2844 3000 0.000022

Mobile 16 113 20 1225 0.0339

chosen as a condition. Thus, each triple in the dataset has the following structure: “operator”,
“country”, “technology”.
MoviesWe compose a context of top 250 popular movies from www.imdb.com, objects are
movie titles, attributes are tags, whereas conditions are genres.
Bibsonomy We selected a random sample of 3000 of the first 100,000 triples of the
bibsonomy.org dataset, objects are users, attributes are tags, and conditions are bookmark
names. The Bibsonomy resource sharing system was developed for collecting, organising,
and sharing bookmarks and publications and relies on folksonomy as a data structure.

7.2 Synthetic datasets

Non-overlapping and noised tricontexts In order to test algorithms’ noise-tolerance 26
triadic contexts have been generated. The initial context contains 30 objects, 30 attributes, 30
conditions, and 3 non-overlapping absolutely dense (with ρ = 1 ) 10 × 10 × 10 cuboids on
the main diagonal in its three-dimensional matrix representation. Then this context has been
noised by the inversions with the probability of a triple inversion varying from 0.1 to 0.5 with
step 0.1 (the latter context can be called equiprobable uniform context, because probability
of (g,m, b) ∈ I is equal for every triple). There have been 5 such series of contexts. Table 4
contains the average number of triples and total density for these sets of contexts.
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Table 4 Noised contexts Context # Triples Density

p = 0 3000 0.1111

p = 0.1 5069.6 0.1873

p = 0.2 7169.4 0.2645

p = 0.3 9290.2 0.3440

p = 0.4 11,412.8 0.4222

p = 0.5 13,533.4 0.5032

Random uniform triple generation Let K = (G, M, B, I ) be an initial tricontext where
I = ∅. Assume that all triples in I are uniformly generated with probability 0.1, i.e. we
produce a uniform context of size 30×30×30 such that ∀(g,m, b) P((g,m, b) ∈ I ) = 0.1.
Gaussian triple generation Let K = (G, M, B, I ) be an initial tricontext where I = ∅.
For Gaussian triple generation (i.e. nonuniform context), probabilities of triple (gi ,m j , bk)
being in I defined as follows:

P((gi ,m j , bk) ∈ I ) = α max
t=1,...,T

e
− (Etx −i)2

D2
tx e

− (Ety − j)2

D2
ty e

− (Etz −k)2

D2
tz , (32)

where T is the number of Gaussians’ centres, Et are the coordinates of Gaussian t center,
and Dt are standard deviations from the centers. The coefficient α ∈ [0, 1] allows tuning
probabilities inside a particular Gaussian. We generate a context of size 30 × 30 × 30 with
α = 1 containing two Gaussians with (7, 7, 7) and (22, 22, 22), and D = (5, 5, 5).

8 Experimental comparison of the methods

The report of experimental results with graphs and tables is given in Sect. 8.1. The method-
by-method and overall discussion of the results with the examples of found triclusters is
provided in Sect. 8.2.

8.1 Experimental results

All the methods have been implemented by the authors and incorporated into a single triclus-
tering toolbox. The toolbox has been implemented in C# usingMSVisual Studio 2010/2012.
All the experiments have been performed on Windows 7 SP1 x64 system equipped with an
Intel Core i7-2600 @ 3.40GHz processor and 8 GB of RAM. AlgLib2 library was used for
performing eigenvalue decomposition.

The following size measure for spectral triclustering has been chosen:

Size(X, Y, Z) = (|X | + |Y | + |Z |)/(|G| + |M | + |B|).
Parallel versions of OAC-triclustering algorithms and TriBox have also been implemented

via parallelization of their outer loops and the computation times for them have been com-
pared.

The results of the experiments on noise tolerance are presented in Fig. 3.

2 http://www.alglib.net/.
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Fig. 3 Similarity for the noise-tolerance experiments

It is clear that every method has managed to successfully find initial cuboids, but the
results quickly deteriorate for most of methods with the growth of inversion probability.
TriBox has shown the best results as it tries to optimize the density-volume trade-off (which
most probably is the best for the areas of the former cuboids with small error probability).
Though primeOAC-triclustering has been also rather noise-tolerant, it generated significantly
more triclusters (most likely the high number of triclusters is the reason for these results).
All the other methods have been unable to provide significant results for noisy contexts.
Moreover, as it was expected, no adequate triclusters were generated by any of the methods
for the inversion probability 0.5 contexts.

Table 5 contains the results for the experiments with other criteria. The lowest (highest)
values of criteria are typed in bold. Note that the lowest value is not necessary the best one,
e.g., even though a low value of cardinality is desirable, an output collection of 2 triclusters
is rather bad result for its further usage.

The following values for parameters were selected:

1. OAC-triclustering: ρmin = 0
2. SpecTric: smin = 0
3. TriBox: λ0 = ρ(K)

4. Trias: τG = τM = τB = 0

To show how the values of quality measures vary with different parameters values, we
provide the reader with the results on Mobile operators dataset (Table 6).

We also selected four criteria to build graphs on quality comparison: the cardinality,
average density, coverage and the diversity. It may shed light on how to choose a Pareto-
optimalmethod (collection) for a particular dataset and give some clues in general (see Fig. 4).
Colored paths on the graph connect points of the same particular method for a chosen range
of method parameters. Note that Trias and Tribox have only one point at each plot.

Reading the pairwise graphs on the triclustering results for Mobile operators dataset
(Fig. 4) one can conclude that there is no winning approach. However, these graphs make
it possible to find a suboptimal solution. One can see that points for OAC(′) are at the top
right corner of each diagram and this is not the case for any of the rest algorithms, thus
Trias looses in the triclusters number. There is another suboptimal approach, TriBox, since
its points are close to the top right corner for all graphs. Guided by this pairwise plots and
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Table 5 Results of the experiments on the computation time (t , ms), triclusters count (n), density (ρ, %),
coverage (Cov, %), and diversity (Div, %)

Algorithm t tpar n ρav Cov Div DivG DivM DivB

Uniform random context

OAC (�) 407 196 73 10 100 0 0 0 0

OAC (′) 312 877 2659 32 100 93 60 60 60

SpecTric 277 – 5 9 9 100 100 100 100

TriBox 6218 1722 1011 74 96 97 66 80 85

Trias 29,367 – 38,356 100 100 ≈100 ≈100 4 4

Non-uniform random context (Gaussian-generated)

OAC (�) 334 135 276 14 100 ≈100 0 0 0

OAC (′) 382 1391 3604 38 100 59 33 22 33

SpecTric 131 – 7 24 2 100 100 100 100

TriBox 1,128,449 309,640 77 92 40 98 71 86 87

Trias 130,013 – 16,685 100 100 99 96 18 14

IMDB

OAC (�) 2314 1573 1500 2 100 16 10 1 8

OAC (′) 547 2376 1274 54 100 97 95 92 29

SpecTric 98,799 – 21 17 21 100 100 100 100

TriBox 197,136 55,079 328 92 99 99 99 95 31

Trias 102,554 – 1956 100 100 ≈100 ≈100 53 26

BibSonomy

OAC (�) 19297 6803 398 4 100 80 67 43 80

OAC (′) 13,556 9400 1289 9466 100 ≈100 89 ≈100 ≈100

SpecTric 5,906,563 – 2 50 100 100 100 100 100

TriBox >24 h

Trias 110,554 – 1305 100 100 ≈100 92 ≈100 ≈100

the idea which of the quality measures are most important, an analyst can conclude which
method is the most suitable for her dataset.

The graphs for synthetic dataset also show that there is no a winning approach. However,
for uniform triple generation scheme one can conclude that Trias is the best one with respect
to three criteria, Diversi t y,Coverage and Density.Moreover, it is possible to see the trade-
off between Density and Coverage for OAC(′). The weakness of Spectric is revealed: it
has low density, but the restmeasures are of high value.OAC(�) has extremely poor diversity.
Similarly for Gaussian triple generation scheme, Trias found the best patterns with respect
to Diversi t y, Coverage and Density. One more trade-off appears for OAC(′) between
Diversi t y and Coverage. The drawbacks of OAC(�) and Spectric remain the same.

For the IMDB dataset Trias again produces highly diverse, absolutely dense and patterns
of 100% Coverage, but the number of patterns is too high for analysis. Two suboptimal
solutions are OAC(′) and TriBox. It is beneficially that for OAC(′) there is no trade-off
between Cardinali t y and Diversi t y, and Density and Coverage.

The Bibsonomy dataset is the biggest one and experiencing intrinsic noise of tagging
procedure, therefore it is not a surprise that Trias and OAC(′) discovered many patterns.
For OAC(′) it is possible to reach less number of patterns than Trias produces keeping the

123

Author's personal copy



Mach Learn (2015) 101:271–302 295

Table 6 Results of the experiments on mobile operators dataset

Algorithm Param. t , ms n Cov CovG CovM CovB Div DivG DivM DivB ρav

OAC (�) 0 470 173 100 100 100 100 5 4 1 0 15

0.2 1365 39 86 94 83 100 50 47 18 0 39

0.4 1373 9 41 63 42 100 81 78 53 0 70

0.6 1363 5 35 50 42 100 100 100 70 0 88

0.8 1366 3 32 19 41 70 100 100 33 0 100

1 1371 3 32 19 41 70 100 100 33 0 100

OAC (′) 0 180 133 100 100 100 100 62 57 36 0 56

0.2 128 133 100 100 100 100 62 57 36 0 56

0.4 93 100 100 100 100 100 71 66 43 0 63

0.6 95 37 100 100 100 100 84 83 60 0 83

0.8 98 18 100 100 100 100 97 97 65 0 99

1 93 16 100 100 100 100 99 99 63 0 100

SpecTric 0 351 8 16 100 100 100 100 100 100 100 67

0.2 37 7 17 100 100 100 100 100 100 100 58

0.4 40 3 38 100 100 100 100 100 100 100 14

0.6 33 3 38 100 100 100 100 100 100 100 14

0.8 26 2 54 100 100 100 100 100 100 100 8

1 3 1 100 100 100 100 NaN NaN NaN NaN 3

TriBox – 73,077 24 96 81 96 90 71 66 45 0 80

Trias 〈0, 0, 0〉 519 100 100 100 100 100 94 85 58 2 100

Cov, Div and ρ are given in %

best level of Diversi t y and Coverage. An analyst may play with OAC(�) density to find
the balance between Density and Coverage or Coverage and Diversi t y if she needs less
patterns than for the preceding two suboptimal methods.

8.2 Discussion of the results

Trias is one of the most time consuming algorithms considered in the paper, along with
TriBox and SpecTric, for large contexts. Thus on the pairwise criteria graphs, the Trias

point lies at the right upper corner of three plots (a), (c), (e) and it is close to the origin at the
axis−Cardinali t y for the other three. Although each of the resulting triclusters (triconcepts)
can be easily interpreted, their number and small sizes make it difficult to see the general
structure of the dataset. Since all of the triconcepts have been generated so that every triple
has been covered, the coverage is equal to 1. Because the concepts are small, the general
diversity is rather high. Still, the set diversity depends on the size of the corresponding set:
the smaller the set, the greater chance of intersection and the lower the diversity.

Examples of Trias triconcepts for the IMDB context:
1. {The Princess Bride (1987), Pirates of the Caribbean: The Curse of the Black Pearl (2003)}, {Pirate},

{Fantasy, Adventure}
2. {V forVendetta (2005)}, {Fascist, Terrorist, Government, Secret Police , Fight}, {Action, Sci-Fi, Thriller}

SpecTric has displayed rather good computation time only for small contexts. The eigenvalue
decomposition of Laplacian matrix takes most computation time. In the future, we intend
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to test some alternative linear algebra libraries in the toolbox and compare the results as
well. The resulting triclusters can be reasonably interpreted, though their average density is
low. Their small number makes this method good for dividing the context into several non-
overlapping parts. Also the diversity for SpecTric is always equal to 1 (plots (a) and (e) on
the pairwise criteria graphs), because the method generates partitions of the initial context.
However, the high diversity leads to rather low coverage because of many discarded edges
and there is trade-off between density and diversity (see plot (c)).

Examples of SpecTric triclusters for the IMDB context:

1. ρ = 23.08%, {Alien (1979), The Shining (1980), The Thing (1982), The Exorcist (1973)}, {Spaceship,
Egg, Parasite, Creature, Caretaker, Colorado, Actress, Blood, Helicopter, Scientist, Priest, Washington
D.C., Faith}, {Horror}

2. ρ = 2.09%, {The Shawshank Redemption (1994), The Godfather (1972), The Godfather: Part II (1974),
…, Bonnie and Clyde (1967), Arsenic and Old Lace (1944)}, {Prison, Cuba, Business, 1920s, …, Texas,
Cellar}, {Crime, Thriller }

TriBox in this study generates the best triclusters, even though it is often the second best
on the pairwise criteria graphs. It totally dominates OAC- box and SpecTric in Density −
Coverage axes (plot (c)). The only drawback of thismethod is high computation time, though
the use of the parallel version of TriBox can significantly lower it at multi-core processors.
Average density of the resulting triclusters is rather high, they have good interpretability.
Coverage and diversity are also high in most cases. The only exception is the set diversity
in the situation when some of the sets (objects, attributes or conditions) are small, just as for
Trias.

Examples of TriBox triclusters for the IMDB context:

1. 100%, {Million Dollar Baby (2004), Rocky (1976), Raging Bull (1980)}, {Boxer, Boxing}, {Drama,
Sport}

2. 83.33%, {The Sixth Sense (1999), TheExorcist (1973), The Silence of the Lambs (1991)}, {Psychiatrist},
{Drama, Thriller}

3. 33.33%, {Platoon (1986), All Quiet on theWestern Front (1930), Glory (1989), Apocalypse Now (1979),
Lawrence ofArabia (1962), Saving Private Ryan (1998), Paths ofGlory (1957), FullMetal Jacket (1987)},
{Army, General, Jungle, Vietnam, Soldier, Recruit}, {Drama, Action, War}

Box OAC-triclustering has been not that successful. Despite being rather fast (only OAC-
triclustering based on prime operators and SpecTric for small contexts are faster) and having
good parallel version the resulting triclusters are quite large, have relatively low density and
many intersections. It leads to the high coverage (1 for ρmin = 0) and rather low diversities.
For example, one can see from pairwise criteria plots that OAC-boxmay reach optimal values
of Density, Diversity and Cardinality (plots (d), (e), and (f)). Also these triclusters are difficult
to interpret (unlike SpecTric’s triclusters that also have large size and low density). In many
cases extent size is small. Examples are given below:

1. 0.9%, {The ShawshankRedemption (1994), TheGodfather (1972), Ladri di biciclette (1948), Unforgiven
(1992), Batman Begins (2005), Die Hard (1988), …, The Green Mile (1999), Sin City (2005), The Sting
(1973)}, {Prison, Murder, Cuba, FBI, Serial Killer, Agent, Psychiatrist,…, Window, Suspect, Organized
Crime , Revenge, Explosion, Assassin, Widow}, {Crime, Drama, Sci-Fi, Fantasy, Thriller, Mystery}

2. 1.07%, {The Great Escape (1963), Star Wars: Episode VI - Return of the Jedi (1983), Jaws (1975),
Batman Begins (2005), Blade Runner (1982), Die Hard (1988),…, Metropolis (1927), Sin City (2005),
Rebecca (1940)}, {Prison, Murder, Cuba, FBI, Serial Killer, Agent, Psychiatrist,…, Shower, Alimony,
Phoenix Arizona, Assassin, Widow}, {Drama, Thriller, War}
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Prime OAC-triclustering showed rather good results. It is one of the fastest algorithms
(though some additional optimization implemented for a non-parallel versionmade the paral-
lelization inefficient for small datasets). The number of triclusters is high, but they are easily
interpreted. Once again for ρmin = 0 coverage is equal to 1, but remains high for different
ρmin . The diversity is usually rather high. According to the pairwise criteria graphs OAC-
Prime shows the results even better than Tribox on IMDB and Mobile operators datasets
(Fig. 4), but demonstrates rather high number of triclusters on Bibsonomy data as well as
Trias. Examples of Prime OAC triclusters for the IMDB context are given below:

1. 56.67%, {TheGodfather: Part II (1974), TheUsual Suspects (1995)}, {Cuba, NewYork, Business, 1920s,
1950s}, {Crime, Drama, Thriller}

2. 60%, {Toy Story (1995), Toy Story 2 (1999)}, {Jealousy, Toy, Spaceman, Little Boy, Fight}, {Fantasy,
Comedy, Animation, Family, Adventure}

Overall, none of the algorithms is the best over all the five criteria. Yet, based on our
experimentation results, one can see thatOAC- Prime andOAC- Box are the fastest, whereas
TriBox and OAC- Prime are the best over density, coverage, diversity and cardinality. With
respect to the noise-tolerance, TriBox is the best, whereas OAC- Prime is the second best.
The TriBox and OAC- Prime should be recommended to the users interested in finding
interpretable triclusters.

9 Conclusion

In this paper, we presented a general view of triclustering for binary triadic datasets unifying
formal triconcepts, density-based heuristics and approximation frameworks. In addition to
the conventional computation time criterion, we presented a set of evaluation criteria for the
results, oriented at finding interpretable solutions. These criteria—density, coverage, diver-
sity, noise tolerance, and the cardinality—represent different aspects of the interpretability.
The cardinality is of an issue because the number of triclusters should correspond to the
structure of the dataset under investigation—but this is usually unknown. We cannot help
but refer the reader to an analogous issue of “the right number of clusters” in a conven-
tional setting, which found no reasonable solution as yet. We took a number of triclustering
algorithms developed by the authors, including a novel algorithm OAC-Prime, and a repre-
sentative formal triconcept finding algorithm Trias, and presented a number of theoretical
results to explore their efficiency and allow making them more efficient in some cases. We
designed a comprehensive experimental testing framework including a rich structure and
noise generating setup.

The investigation of resource efficiency of the proposed methods proves that OAC- box,
OAC- prime, Tribox, and SpecTric have polynomial computational time in the input size,
and the number of output patterns is no more than the number of triples in the input data.
This contrasts the fact that formal triconcept Trias algorithm has its worst computation time
exponential as well as the number of triconcepts. Yet the experimentation on both synthetic
and real data shows that there is no one winning method according to the introduced criteria.
For example, maximally dense patterns with maximal coverage found with Trias, impose
a less than optimal diversity and a very large number of output patterns. The multicriteria
choice allows an expert to decidewhich of the criteria aremost important in a specific case and
make a choice. Overall, our experiments show that our Tribox andOAC-prime algorithms can
be reasonable alternatives to triadic formal concepts and lead to Pareto-effective solutions.
Although TriBox is better with respect to noise-tolerance and the number of clusters, OAC-
prime is the best on scalability to large real-world datasets.
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Further work on triclustering can go in the following directions:

– developing a unified theoretical framework for n-clustering,
– finding bridges between probabilistic (Meulders et al. 2002) and algebraic approaches,
– combining several constraint-based approaches to triclustering (e.g., mining dense tri-

clusters first and then frequent tri-sets in them),
– finding better approaches for estimating the tricluster density,
– taking into account features of real-world data in optimization procedures (their sparsity,

value distribution, etc.) and online data processing,
– using different bicluster approaches to extend them to triadic data,
– shifting to arbitrary numeric or interval datasets from the binary case [continuing the work

(Kaytoue et al. 2014)],
– applying triclustering in recommender systems and social network analysis.

As for the formal triconcept analysis, probably a possible way to go should be in the
direction of matrix decomposition developed in Belohlávek and Vychodil (2010); Miettinen
(2011). Note that Boolean tensor factorization can be considered as an approach to the
reduction of the number of the resulting triconcepts and finding an optimal concept cover is
a central problem there (Belohlávek et al. 2013).
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