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Abstract. In this paper, we introduce a modification of the lazy as-
sociative classification which addresses the graph classification problem.
To deal with intersections of large graphs, graph intersections are ap-
proximated with all common subgraphs up to a fixed size similarly to
what is done with graphlet kernels. We illustrate the algorithm with a
toy example and describe our experiments with a predictive toxicology
dataset.
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1 Introduction

Classification methods for data given by graphs usually reduce initial graphs
to numeric representation and then use standard classification approaches, like
SVM [1] and Nearest neighbors with graph kernels [2], graph boosting [3], etc.
By doing so, one usually constructs numeric attributes corresponding to sub-
graphs of initial graphs or computes graph kernels, which usually are also based
on the number of common subgraphs of special type. In this paper, we suggest an
approach based on weak classifiers in the form of association rules [4] applied in
a “lazy” way: not all of the association rules are computed to avoid exponential
explosion, but only those that are relevant to objects to be classified. Lazy classi-
fication is well studied experimentally [5], here we extend the approach to graphs
and propose a uniform theoretical framework (based on pattern structures [6])
which can be applied to arbitrary kinds of descriptions. We show in a series
of experiments with data from the Predictive Toxicology Challenge (PTC [7])
that our approach outperforms learning models based on SVM with graphlet
kernel [8] and kNN with graphlet-based distance.

The rest of the paper is organized as follows. In Section 2, we give main
definitions on labeled graphs, pattern structures, and lazy associative classifica-
tion. In Section 3, we consider an example. In Section 4, we discuss the results of
computational experiments on PTC dataset. In Section 5, we give the conclusion
and discuss directions of further research.
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2 Main definitions

In this section, we give the definitions of the main concepts used in the paper.

2.1 Labeled graphs and isomorphism

First, we recall some standard definitions related to labeled graphs, see
e.g. [9,10,11].

Undirected graph is a pair G = (V, E). Set V is referred to as a set of nodes
of a graph. Set E = {{v,u} | v,u € V}UEy, a set of unordered elements of V, is
called a set of edges, and Eg C V — is a set of loops. If Eg = (), then G is called
a graph without loops.

Graph H = (V, Eg) is called a subgraph of graph G = (V, Eg), if all nodes
and edges of H are at the same time nodes and edges of G correspondingly, i.e.
Vg C Vg and Eg C Eg.

Graph H = (Vy, Eyy) is called an induced subgraph of graph G = (Vg, Eg),
if H is a subgraph of G, and edges of H are comprised of all edges of G with
both nodes belonging to H.

Given sets of nodes V', node labels Ly, edges E, and edge labels Lg, a labeled
graph is defined by a quadruple G = ((V,lv), (E,le)) such that

— lv CV x Ly is the relation that associates nodes with labels, i.e., (v is a set
of pairs (v;,!;) such that node v; has label [;,

— le CV xV x Lg is the relation that associates edges with labels, i.e., le is
a set of triples (v;, v;,1l;;) such that edge (v;,v;) has label ;.

Example 1. A molecule structure can be represented by a labeled graph.

NH; — C*—CH}

Here V' ={1,2,3,4,5,6}, B ={(1,3), (2,3)7( 4),(4,5),(4,6)},
v = {(1, NHa), (2, CHs), (3.0), (4,C), (5, 0H). (6, C1)},
le=1{(1,3,1),(2,3,1),(3,4,2),(4,5,1),(4,6,1)}, and edge type 1 corresponds to
a single bond (ex. H No—C') while edge type 2 — to a double bond (ex. C = C).

A labeled graph G; = ((V1,1v1), (E1,le1)) dominates a labeled graph Gy =
((Va,lva), (Fa,lez)) with given order < (e.g. natural, lexicographic) on vertex
and edge labels, or Go < G; (or Gs is a subgraph of Gi), if there exists an
injection ¢: Vo — Vj such that it:

— respects edges: (v,w) € Fy = (¢(v), p(w)) € Ey,
— fits under labels: lva (v) < lv1(p(v)), (v,w) € By = lea(v,w) < leg(p(v), p(w)).

Two labeled graphs G and G4 are called isomorphic (G ~ G2) if G1 < G4
and G < Gi.
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G1~Gyas3Jp: Vo ={1,2,3,4,5,6} -V, ={1,2,3,4,5,6} = (6,5,4,3,1,2),
satisfying the definitions of graph dominance and isomorphism.

An injective function f : V — V' is called a subgraph isomorphism from G to
G', if there exists a subgraph of G’: S < G’, such that f is a graph isomorphism
from G to S, or G ~ S.

CH}— 3 —o0n? NHj — 3 —CP?

Example 3. G : c4\ Gy - o

NH$ CH3 OH®
(31 is subgraph-isomorphic to Gs.

Given labeled graphs G; and Ga, a set G111 Gy =
{G|G<G1,Ge, VG, <G1,Gy G, G}iscalled aset of mazimal common
subgraphs of graphs G; and G5. We also refer to G M G as to intersection of
graphs G; and G2, and to ' — as to similarity operator defined on graphs.

NH; — C——CHj3; CHS—W—OH NH;—C CHz—C
C

l i
VRN BN / AN

OH Cl NH, OH OH OH

Ezxample 4.

For sets of graphs G = {G1,...,Gr} and H = {H;y,..., H,} the similarity
operator is defined in the following way:
QI_I'H:MAXS{GZI_IHZ | Gl GQ,Hj GH}

Given sets of labeled graphs G; and Gy, we say that a set of graphs G; is
subsumed by a set of graphs Go, or G1 C G, if G1 MGy = Gy.

2.2 Graphlets

Definition 1. A labeled graph g is called a k-graphlet of a labeled graph G if
g 1s a connected induced subgraph of graph G with k nodes [12].

Definition 2. A set of labeled graphs G* is called a k-graphlet representation
of a labeled graph G if any g € G is a unique (up to subgraph isomorphism) k-
graphlet of graph G, i.e

Vg € G* graph g is a k-graphlet of G, ¥g1, g2 € G one does not have g1 < go.

Definition 3. k-graphlet distribution of a labeled graph G is the set {(g;,n;i)},
where g; is a k-graphlet of G and n; is the number of k-graphlets in G isomorphic
to g;.

65



CHj H OH H

Example 5. G : Gy :

G={C-Cc=C,C-C—-H,C=C—-H,C—-C-_C},

g ={C-Cc=C,C-C-H,C=C-H,C-C-0,C=C-0,C—-0O—-H} —are
3-graphlet representations of graphs G; and Gy correspondingly (with benzene
rings comprised of carbon molecules C). 3-graphlet distributions of graphs G
and G are given in Table 1.

Table 1. 3-graphlet distributions of graphs G1 and G2 (benzene rings are comprised
of carbon molecules C).

CC=C|CCH|C=CH|CCO|C=CO|COH|CCC
Gi| 7 8 5 0 0 0 1
G2| 6 4 4 2 2 2

Graphlets were introduced in biomedicine and are used to compare real cellu-
lar networks with their models. It is easy to demonstrate that two networks are
different by simply showing a short list of properties in which they differ. It is
much harder to show that two networks are similar, as it requires demonstrating
their similarity in all of their exponentially many properties [12].

Graphlet distribution serves as a measure of network local structure agree-
ment and was shown to express more structural information than other metrics
such as centrality, local clustering coeflicient, degree distribution etc. In [12],
they considered all 30 combinations® of graphlets with 2, 3, 4 and 5 nodes.

2.3 Pattern structures

Pattern structures are natural extension of ideas proposed in Formal Concept
Analysis [13], [6].

Definition 4. Let G be a set (of objects), let (D, M) be a meet-semi-lattice (of
all possible object descriptions) and let 6 : G — D be a mapping between objects
and descriptions. Set §(G) = {6(g)|g € G} generates a complete subsemilattice
(Ds, M) of (D, M), if every subset X of §(G) has infimum NX in (D, N).
Pattern structure is a triple (G, D, ), where D = (D, M), provided that the
set §(GQ) :={d(g) | g € G} generates a complete subsemilattice (Ds, M) [6,11].

! https://parasol.tamu.edu/dreu2013/0Leary

66



Definition 5. Patterns are elements of D. Patterns are naturally ordered by
subsumption relation C: given ¢, d € D one has ¢ C d < c¢Md = c. Operation N
is also called a stmilarity operation. A pattern structure (G, D, 0) gives rise
to the following derivation operators (-)°:

A°=[1]6g)  forAeg,
geA
d°={geG|dC ()} ford e (D, n).

Pairs (A, d) satisfying A C G, d € D, A° = d, and A = d° are called
pattern concepts of (G, D, 9).

Ezample 6. Let {1,2,3} be a set of objects, {G1,G2,Gs} — be a set of their
descriptions (i.e., graph representations):

CH;— C——NH, NH; — C——OH NH; — C——OH

| | |
C

Gy : C Gy : C Gs:

N AN N
NH, NH, CH, a NH; a

D is the set of all sets of labeled graphs, M is a graph intersection operator,
D = (D, M). A set of objects (graphs) {1, 2,3}, their “descriptions” (i.e. graphs
themselves) D = {G1,G2,G3} (6(i) = G4,i = 1,...,3), and similarity operator
M comprises a pattern structure ({1,2,3}, D, J).
{1,2,3}° = {NHy — C = C}, because {NHy — C = C} is the only graph,
subgraph-isomorphic to all three graphs 1,2, and 3. Likewise,
{NHy—-C = C}° ={1,2,3}, because graphs 1,2, and 3 subsume graph { N Hy —
c=Ct.
{1,2}° = {CH3 — C = C — NHy}, because {CHs — C = C — NH,} is a graph,
subgraph-isomorphic to 1, and 2, but not to graph 3. Likewise,
{CH; — C =C — NHy}° = {1, 2}, because only graphs 1, and 2 subsume graph
{CHs — C = C — NH,}, but graph 3 does not.

Here is the set of all pattern concepts for this pattern structure:

1\'H2—ﬂ‘ CH;;—T‘,‘ NHQ—(Hj
{ <{132a3} 9 C> ’ ({1a2} 9 C\, ) ) ({173} 9 C\‘ ) )
NH. NH,

NH, —C——OH

<{253} 9 (H7\ > 7(13{G1}) 7(27{02})5(37{G3})’(®a{G17G27G3}) :

Cl

For some pattern structures (e.g., for the pattern structures on sets of graphs
with labeled nodes) even computing subsumption of patterns may be NP-hard.
Hence, for practical situations one needs approximation tools, which would re-
place the patterns with simpler ones, even if that results in some loss of infor-
mation. To this end, we use a contractive monotone and idempotent mapping
v : D — D that replaces each pattern d € D by w(d) such that the pattern
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structure (G, D, 9) is replaced by (G, D, ¢ o4). Under some natural algebraic
requirements that hold for all natural projections in particular pattern struc-
tures we studied in applications, see [11], the meet operation M is preserved:
Y(X MY) = ¢(X)Ny(Y). This property of a projection allows one to relate
premises in the original representation with those approximated by a projection.
In this paper, we utilize projections to introduce graphlet-based classification
rules.

2.4 Lazy associative classification

Consider a binary classification problem with a set of positive examples G,
negative examples G_, test examples Giest, and a pattern structure
(G+U G_,D,0) defined on the training set.

Definition 6. A pattern h € D is a positive premise iff [11]
RNG_=0and NGy #0D

A positive premise is a subset of the least general generalization of descriptions
of positive examples, which is not contained in (does not cover) any negative
example. A negative premise is defined similarly. Various classification schemes
using premises are possible, as an example consider the following simplest scheme
from [6]: if the description §(g) of an undetermined example g contains a positive
premise h, i.e., h C §(g), then g is classified positively. Negative classifications are
defined similarly. If §(g) contains premises of both signs, or if §(g) contains no
premise at all, then the classification is contradictory or undetermined, respec-
tively, and some probabilistic techniques allowing for a certain tolerance should
be applied.

Definition 7. Class association rule (CAR) [5] for a binary classification prob-
lem is an association rule in a form h — {4, —}, where h is a positive or negative
premise, respectively.

The definition means that for a binary graph classification problem, for in-
stance, we can mine classification association rules in a form {¢;} — {+,—},
i.e. if a test graph subsumes a subgraph g;, that is common only to positive
(negative) training examples, it is therefore classified as positive (negative). We
elaborate this idea in the next subsection. As there might be lots of such CARs,
we might come up with a single classification rule taking into account these
CARs. For instance, we can count all positive and negative CARs for each test
object and classify it with a majority voting procedure. Of course, the idea is eas-
ily generalized to multi-label classification problem. The described classification
schemes are explored in [5].

Another advantage of the lazy classification framework is its obvious par-
allelization. Suppose there are K processors. If we consider classification of an
unlabeled object we can divide the training set into K separate subsets. Then,
for each subset we perform intersections between the labeled objects with the un-
labeled one to be classified. After all unfalsified intersections are found we can go
on to the classification phase which involves voting based on those intersections.
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2.5 Graphlet-based lazy associative classification

In this subsection, we combine the ideas of pattern structures and their pro-
jections, graphlets, and lazy associative classification, and introduce our algo-
rithm. First, we recall the definition of k-projection producing all graphs with
less than or equal to k£ nodes.

Definition 8. Given a graph pattern structure (G, D, ), we call Y (G) = {H; =
(Vi lvg), (Eiyle;)) | Hi < G, H; is connected, |Vi| < k} a k-projection, defined
for graph descriptions G.

Obviously, this operator is a projection, i.e. contractive, monotone, and idempo-
tent function.

Definition 9. Given a graph pattern structure (G, D,J), k-graphlet deriva-
tion operator 6, = |J;;<, Y1 00 takes an object g described by graph G and
produces all I-graphlets of G forl=1,...k.

Ezample 7. For object 1 with “graph description” G; from example 5 d3(1) is
the set of all 1-,2-, and 3-graphlets of graph 1:

(1) ={C, H C-C, C=C,C-H C-C=C, C-C-H, C =
C —H, C—C —C}. To clarify, here §(1) = {G1},3(1) = ¢¥3(6(1)) = ¢3(G1) =

Definition 10. Given k-graphlet representations G¥ and G5 of labeled graphs
G1 and Go, the intersection gf Mg g§ 1s called k-graphlet intersection of G
and Go. The My operator is further called k-graphlet similarity operator.

Ezxample 8. For graphs 1 and 2 with “graph descriptions” G; and G5 from exam-
ple5 Gy M3 Go ={C, H,C-C,C=C,C-H,C-C=C,C-C-H,C=C-H}
is the set of all common 1-; 2-, and 3-graphlets of graphs 1 and 2.

Here are the main steps of our algorithm:

1. All k-graphlet intersections of test examples and positive training examples
are computed: hy = Gy My G4

2. Each intersection h is tested on subsumption by negative training examples.
If some of them subsumes h, then this intersection is falsified. Otherwise,
h4 gives a vote for positive classification of the test example Gy, ;

3. The same procedure is done for each intersection of Gy with negative ex-
amples;

4. Test example Gy, is classified according to the weighted majority rule where
each unfalsified intersection is given a weight equal to its cardinality (the
cardinality of the corresponding set of graphs).
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3 A toy example

We illustrate the principle of our method with a toy example. Let us consider
the following training and test sets comprised of molecular descriptions of toxic
(G1 — G4) and non-toxic (G5 — G7) chemical compounds. The task is to build
a discriminative classifier able to determine whether the objects from the test
set (Gg — G11) are toxic or not. The main steps of the algorithm, described in
the previous section, are briefly illustrated with Tables 2 and 3. First, we build
3-graphlet intersections of test and training examples (we use only graphlets
with 3 nodes for the purpose of illustration). Then, a “+” or “—” sign with
cardinality of intersection is put in Table 3 if this intersection is not subsumed
by any example of the opposite class. Otherwise, the counter-example subsuming
this intersection is given.

Positive examples:

A—C—B A—C—B A—C—B A—C—FE
Gl : (‘l GQ : i‘“ Gg : (H? G4 : i‘“
/N /N /N /N
D D B D A B B B
Negative examples:
A—(H:—D A—ﬂ:—E B—(H,‘—D
Gs : /c\ Gg : /c\ Gr: /(‘\
D D B D D B
Test examples:
A—W—B A—W—D A—W—D A—W—B
Gg : /C\ Gg : /C\ Gl() : /C\ Gu : /C\
D B B B D B A D

3-graphlet intersections of training and test examples are given in Table 2. For
instance, graphs G; and Gg have 4 common 3-graphlets: A—-C-B, A-C=C, B-
C=C, and C=C-D. In this simple case, we do not differentiate between a single
and a double bond (e.g., ACC here stands for A-C=C without ambiguity).

Further, Table 3 summarizes the procedure. For instance, a '+4’ sign for
graphs G; and Gg means that all common 3-graphlets of G and Gg (i.e., A-C—
B, A-C=C, B-C=C, and C=C-D) are not subgraph-isomorphic to any of the
negative examples G5 — G altogether at the same time. Thus, this intersection
“gives a vote” of weight 4 (the cardinality of the mentioned set of graphlets)
for positive classification of Gig. On the contrary, all common 3-graphlets of G4
and Gg (A-C=C, B-C=C, and C=C-E) are altogether subgraph-isomorphic to
negative example Gg, therefore, the intersection of G4 and Gg doesn’t “give a
vote” for positive classification of Gg.

Thus, molecules Gg and G1; are classified as toxic, Gy, G1¢ are classified as
non-toxic.

4 Experiments

The proposed algorithm was tested with the 2001 Predictive Toxicology
Challenge dataset in comparison with SVM with graphlet kernel and k-Nearest-
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Table 2. All common 3-graphlets of test (Gs — G11) and training examples.

Gs Gy Gho Gu1

G1|ACB, ACC, BCC, CCD ACC, BCC, CCD ACC, CCD ACB, ACC, BCC, CCD
G>|ACB, ACC, BOC, CCD| ACC, BCC, CCD ACC, CCD_|ACB, ACC, BOC, CCD
G3|ACB, ACC, BCC, CCE ACC, BCC, CCE ACC, CCE ACB, ACC, BCC
Gy ACC, BCC, CCE ACC, BCC, BCE, CCE ACC, CCE ACC, BCC

Gs ACC, CCD ACC, ACD, CCD ACC, ACD, CCD ACC, ACD, CCD
Gs|ACC, BCC, CCD, CCE|ACC, BCC, CCD, CCE|ACC, CCD, CCE ACC, BCC, CCD
G7|BCC, CCD, CCE, DCE BCC, CCD, CCE CCD, CCE, CDE BCC, CCD

Table 3. Lazy classification table

G1|G2|G3|G4|G5|Ge|G7|Score|Class
Gs +4 +4 —|—4 GG G1 4|4 40 +
Go |G |Ge|Ge|+4|-3|-4|-3| 0:6 —
G10|G5|G5|Ges|Gs|—3|-3]-3| 0:9 | —
G11|+4|4+4|+3|Ge| -3 |G1|G1| 8:0 —+

Neighbor with graphlet-based Hamming distance. SVM classifiers are considered
to be good benchmarks for graph classification problem [8]. We implemented a
Scikit-learn [14] version of Support Vector Classifier with graphlet kernel and
graphlets having up to 5 nodes. We also adopted a k-Nearest-Neighbor for graph
classification problem by defining a Hamming distance between two graphs (0 if
two objects have a certain graphlet in common, 1 otherwise). For instance, for
two graphs from example 5 in case of graphlets with up to 3 nodes this distance
is equal to 7 (G subsumes graphlet C' — C' — C not subsumed by G35, while G
subsumes graphlets {0, C -0, O—H, C-C-0,C=C-0, C—-0-H}
not subsumed by Gy).

The training set is comprised of 417 molecular graphs of chemical compounds
with indication of whether a compound is toxic or not for a particular sex and
species group out of four possible groups: {mice, rats} x {male, female}. Thus, 4
separate sets were built for male rats (MR, 274 examples, 117 are toxic for male
rats, 157 are non-toxic), male mice (MM, 266 examples, 94 are positive, 172 are
negative), female rats (FR, 281 examples, 86 are positive, 195 are negative) and
female mice (FM, 279 examples, 108 are positive, 171 are negative).

We run 5-fold cross-validation for each group (MR, MM, FR, FM) and com-
pared average classification metrics for each fold. The results for male rats are
presented in Table 4 (we got similar results for other groups).

The parameters for SVM and kNN classifiers were tuned through the pro-
cess of GridSearch cross-validation?. The 'K nodes’ parameter determines the
maximum number of nodes in graphlet representation of graphs, i.e. when it is
equal to 4, all graph are approximated with their 4-graphlet representation, or
all unique (in the sense of isomorphism) graphlets with up to 4 nodes.

As we can observe, graphlet-based lazy associative classification is reason-
able with at least 3-graphlet descriptions. In case of 2-graphlet descriptions the

2 http://scikit-learn.org/stable/modules/grid\_search.html
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Table 4. Experimental results for the male rats group. “GLAC” stands for “Graphlet-
based lazy associative classification”, “SVM” here denotes “Support Vector Machine
with graphlet kernel” “kNN” here stands for a k-Nearest-Neighbor classifier with Ham-
ming distance.

K nodes|Accuracy|Precision|Recall|F-score|Time (sec.)
2 0.36 0.32 0.33 | 0.32 5.78
3 0.68 0.83 0.68 | 0.75 17.40
GLAC 4 0.59 0.57 | 0.62 | 0.59 65.72
5 0.55 0.7 0.62 | 0.66 196.03
2 0.45 0.15 0.33 | 0.21 1.54
3 0.52 0.35 0.35 | 0.35 9.03
SVM 4 0.41 0.27 | 0.28 | 0.28 61.31
5 0.36 0.24 0.25 | 0.24 295.89
2 0.45 0.15 0.33 | 0.21 3.35
KNN 3 0.34 0.21 0.23 | 0.22 15.75
4 0.48 0.31 0.32 | 0.31 73.38
5 0.45 0.30 0.31 | 0.30 211.58

algorithm often refuses to classify test objects, because 2-graphlet intersections
of positive and test objects are falsified by negative objects and vice versa. But
3-graphlet descriptions are optimal for this method as the model is probably
overfitted in case of 4- and 5-graphlet descriptions.

5 Conclusion

In this paper, we have proposed an approach to graph classification based on
the combination of graphlets, pattern structures and lazy classification. The key
principle of lazy classification is that one does not have to produce the whole set
of classification rules whatever they are. Instead, one generates those rules that
allow one to classify the current test object. The framework favors the complex
structure of objects as soon as the algorithm does not require a training phase.

We have carried out a number of experiments in molecule classification within
the proposed lazy classification framework. We compared classification perfor-
mance of our method and SVM with graphlet kernel and KNN with graphlet-
based distance. The reason for such a choice is that SVM classifiers are considered
to be good benchmarks for graph classification problem, while kNN is a famous
lazy classification method.

In our experiments graphlet-based lazy classification - following the same
learning curve as the other methods - shows better classification performance
compared to the classical methods in case of molecule toxicology prediction
problem. Further, we plan to investigate the overfitting problem for our algo-
rithm, in particular, the dependency of classification metrics on the number of
considered nodes in graphlets. Other types of descriptions and a parallel version
of our algorithm are also promising directions of study.
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