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What FCA Can Do for Artificial Intelligence?
FCA4AI: An International Workshop

Preface

Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data
analysis and classification. FCA allows one to build a concept lattice and a system of
dependencies (implications) which can be used for many Al needs, e.g. knowledge processing
involving learning, knowledge discovery, knowledge representation and reasoning, ontology
engineering, as well as information retrieval and text processing. Thus, there exist many
“natural links” between FCA and Al

Recent years have been witnessing increased scientific activity around FCA, in particular
a strand of work emerged that is aimed at extending the possibilities of FCA w.r.t. knowl-
edge processing, such as work on pattern structures and relational context analysis. These
extensions are aimed at allowing FCA to deal with more complex than just binary data,
both from the data analysis and knowledge discovery points of view and from the knowledge
representation point of view, including, e.g., ontology engineering.

All these works extend the capabilities of FCA and offer new possibilities for Al activities
in the framework of FCA. Accordingly, in this workshop, we are interested in two main issues:

e How can FCA support Al activities such as knowledge processing (knowledge discov-
ery, knowledge representation and reasoning), learning (clustering, pattern and data
mining), natural language processing, information retrieval.

e How can FCA be extended in order to help Al researchers to solve new and complex
problems in their domains.

The workshop is dedicated to discuss such issues. The papers submitted to the workshop
were carefully peer-reviewed by two members of the program committee and 11 papers with
the highest scores were selected. We thank all the PC members for their reviews and all the
authors for their contributions. We also thank the organizing committee of ECAI-2012 and
especially workshop chairs Jérome Lang and Michele Sebag for the support of the workshop.
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Invited Talk

Relational Concept Analysis: a synthesis and open questions

Marianne Huchard
LIRMM, Université de Montpellier 2 and CNRS, Montpellier, France,
marianne.huchard@lirmm. fr

Abstract

Relational Concept Analysis (RCA) builds conceptual structures on sets of objects
connected by sets of links, following an underlying entity-relationship diagram. These
conceptual structures (concept lattice families) are composed of several concept lattices
(one for each object set one wants to focus on) connected by relational attributes of var-
ious strengths. Concept lattice families can be read to extract interconnected relevant
object groups and classifications as well as to derive implication rules. The RCA algo-
rithm uses classical concept lattice building algorithms and a relational scaling step. In
this talk, we recall the main principles of RCA and we elaborate on several issues (some
of which are totally open) including querying relational data with RCA, looking at spe-
cific relational schemes, convergence of RCA when disturbing the classical algorithmic
schema, and understanding the growth process of concepts.






Formal Concept Analysis Applied to
Transcriptomic Data

Mehwish Alam?3, Adrien Coulet?3, Amedeo Napoli!?, Malika
Smail-Tabbone??

L CNRS, LORIA, UMR 7503, Vandoeuvre-lés-Nancy, F-54506, France
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Abstract. Identifying functions or pathways shared by genes responsi-
ble for cancer is still a challenging task. This paper describes the prepa-
ration work for applying Formal Concept Analysis (FCA) to biological
data. After gene transcription experiments, we integrate various annota-
tions of selected genes in a database along with relevant domain knowl-
edge. The database subsequently allows to build formal contexts in a
flexible way. We present here a preliminary experiment using these data
on a core context with the addition of domain knowledge by context ap-
position. The resulting concept lattices are pruned and we discuss some
interesting concepts. Our study shows how data integration and FCA
can help the domain expert in the exploration of complex data.

Keywords: Formal Concept Analysis, Knowledge Discovery, Data In-
tegration, Transcriptomic Data.

1 Introduction

Over past few years, large volumes of transcriptomic data were produced but
their analysis remains a challenging task because of the complexity of the biolog-
ical background. In the field of transcriptomics, biologists analyze routinely the
transcription or expression of genes in various situations (e.g., in tumor samples
versus non-tumor samples).

Some earlier studies aimed at retrieving sets of genes sharing the same tran-
scriptionl behaviour with the help of Formal Concept Analysis (see, e.g., [7, 10,
11]). Further studies analyze gene expression data by using gene annotations to
determine whether a set of differentially expressed genes is enriched with biolog-
ical attributes [1,2,13]. Many useful resources are available online and several
efforts have been made for integrating heterogeneous data [5, 8]. A recent exam-
ple is of the Broad Institute where biological data were gathered from multiple
resources to get thousands of predefined gene sets stored in the Molecular Signa-
ture DataBase, MSigDB [4]. A predefined gene set is a set of genes known to have
a specific property such as their position on the genome, their involvement in a



biological process (or a molecular pathway) etc. Subsequently, given an experi-
mental gene list as input the GSEA (Gene Set Enrichment Analysis) program
is used to asses whether each predefined gene set (in the MSigDB database) is
significantly present in the input list by computing an enrichment score [3].

In this paper, we are interested in applying knowledge discovery techniques
for analyzing a differentially expressed gene set and identifying functions or
pathways shared by these genes assumed to be responsible for cancer. Knowl-
edge discovery aims at extracting relevant and useful knowledge patterns from
a large amount of data. It is an interactive and iterative process involving a
human (analyst or domain expert) and data sources. We show how various gene
annotations and domain knowledge are integrated in a database which is then
queried for building in a flexible way formal contexts. We present here a pre-
liminary experiments using these data. It was performed on a core context with
the addition of domain knowledge (by context apposition). The considered do-
main knowledge are the hierarchical relationships between molecular pathways.
Pruning the obtained lattices allows us to retrieve interesting concepts which we
discuss. The results obtained from both experiments are also compared.

The plan of the paper is as follows: Section 2 introduces Formal Concept
Analysis, Section 3 explains the data resources which are integrated, Section 4
focuses on the application of FCA, Section 5 discusses the results and Section 6
concludes the paper and presents future Work.

2 Formal Concept Analysis

We introduce here the basics of Formal Concept Analysis that are needed to
understand what follows. Let G and M be the set of objects and set of attributes
respectively and I be the relation between the objects and the attributes I C
G x M, where g € G, m € M, gIm is true iff the object g has the attribute
m. The triple K = (G, M, I) is called a formal context. If A C G, B C M are
arbitrary subsets, then a Galois connection denoted by ’ is given by:

A':={meM|glmVge A} (1)
B :={geG|gImV¥meB} (2)

FCA framework is fully described in [6]. FCA helps in defining concepts which
are composed of a maximal set of objects sharing a maximal set of attributes.
However, given an input context, the resulting concept lattice can be very large
leading to computational and interpretation problems. In order to have reduced
and meaningful concepts, one can select concepts whose support is greater than
a certain threshold, i.e., the iceberg lattice. For a concept (A,B), the support is
the cardinality of the extent A. An alternative is to use the notion of stability
that was proposed in [9, 12]. The stability index measures how much the concept
intent depends on particular objects of the extent.



3 Complex Biological Data Integration

In this section, we introduce and describe the biological data on which we are
working.

3.1 Molecular Signature Database (MSigDB)

Molecular Signature Database (MSigDB) is an up-to-date database which con-
tains data from several resources such as KEGG, BIOCARTA, REACTOME,
and Amigo [4]. It is a collection of 6769 predefined gene sets. A predefined gene
set is a set of genes having a specific property such as their position on the
genome (e.g., the genes at position chr5ql2, i.e., band 12 on arm q of chromo-
some 5), their involvment in a biological process or a molecular pathway (e.g.,
the genes which are involved in the KEGG APOPTOSIS pathway)... A pathway
is a series of actions among molecules in a cell that leads to a certain change
in a cell. KEGG is a database storing hundreds of known pathways?. Besides,
the MSigDB gene sets are grouped into five categories (Table 1). For instance,
all the gene sets which are defined on the basis of gene position belong to the
category C1. The category CbH groups the gene sets defined on Gene Ontology
(GO) terms annotating the genes (with respect to their molecular function or
their housing cellular component).

For our study, we used MSigDB Version 3.0. One entry, shown below in XML
format, describes the gene set corresponding to the GO term 'RNA Polymerase
IT Transcription Factor Activity Enhancer Binding’ (all the attribute names are
underlined). The Members attribute contains the list of gene symbols belonging
to the gene set. MSigDB was chosen as the main source for describing genes
because it gathers up-to-date informations about many aspects of human genes.

<GENESET Standard Name =“RNA Polymerase II Transcription Factor
Activity Enhancer Binding” Systematic Name = “M900” Historical Names ="
Organism =“Homo sapiens” Geneset Listing URL =" Chip = “Human Gene
Symbol” Category Code =“c5” Sub Category Code =“MF” Contributor =“Gene
Ontology” Contributor Org =“GO” Description Brief =“Genes annotated by
the GO term GO:0003705. Functions to initiate or regulate RNA polymerase
IT transcription by binding an enhancer region of DNA.” Description Full ="”
Members =“ MYODI1, TFAP4, EPAS1, RELA, MYF5, MYEF2, NFIX, PURA,
HIF1A” Members Symbolized = “MYOD1, TFAP4, EPAS1, RELA, MYFS5,
MYEF2, NFIX, PURA, HIF1A” Members EZID =“ 7023, 2034, 5970, 3091”
Members Mapping = “ MYOD1, 4654-TFAP4, TFAP4, 7023-EPAS1, EPAS1,
2034-RELA, RELA, 5970-MYF5, MYF5, 4617-MYEF2, MYEF2, 50804-NFIX,
NFIX, 4784-PURA, PURA, 5813-HIF1A” Status =“public” > </GENESET>

3.2 Domain Knowledge

Besides the gene annotations included in MSigDB, many types of domain knowl-
edge are interesting to use when analyzing genes. The first type of such do-

* http://www.genome.jp/kegg/pathway.html



Table 1. Categories of MSigDB Gene Sets

Category Description Data Provenance
C1: Positional Gene Location of the gene on the Broad Institute

Sets chromosome.

C2: Curated Gene Pathways KEGG, REAC-
Sets TOME, BIOCARTA

C3: Motif Gene Sets microRNAs, Transcription Broad Institute
Factor Targets.
C4: Computational Cancer Modules Broad Institute
Gene Sets
C5: Gene Ontology Biological Process, Cellu- AmiGO
(GO) Gene Sets lar Components, Molecular
Functions

main knowledge are the hierarchical relationships between GO terms or between
KEGG pathways. Indeed, the KEGG hierarchy for human groups the KEGG
pathways into 40 categories and 6 upper level categories. Figure 1 illustrates the
KEGG hierarchy detailing on one upper-level category and one category.

Upper Level Categories Pathways
Categories
. 12
> Metabolism —— Categories
—,—P 5 Categories
Genetic
=  Information
Processing
—» 3 Categories
Environmental T t d
[ Information » ransportan
KEGG Processing Catabolism
Hi:rarchy ] Cell Cycle
Sastcnn] —®  Cell Motility
Oocyte
| - Cellular Mei?:is
Processing p Cell Growth
and Death Apoptosis
Cell
» p53
. Communication Signaling
Qrganismal Pathway
b Systems 1
9 Caiegories
Human 7 Cat i
- 1 [ ategories
Diseases

Fig. 1. Hierarchical Relationship in KEGG

In our study we have genes described by pathways involving them which
may in turn be present in some category of pathways. For example, if a gene
is involved in a pathway apoptosis it will also be in the category 'Cell Growth
and Death’. In order to facilitate the knowledge discovery, it is important to
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identify the relevant data sources, organize, and integrate the data at one single
database. In our case, the relevant primary data sources are MSigDB, KEGG
PATHWAYS database, and AmiGO database.

4 From Data to Knowledge

Once the data are integrated in our database the next step is to build formal
contexts for applying FCA. Our experiment focuses on applying FCA to a core
context describing genes by MSigDB-based attributes and shows its extension
based on the addition of domain knowledge.

4.1 Test Data Sets

The experiments described here are based on three published sets of genes corre-
sponding to Cancer Modules defined in [14]. The authors compiled gene sets from
various resources and a large collection of micro-array data related to cancers.
These modules correspond to gene sets whose expression significantly change in
a variety of cancer conditions (they are also defined as MSigDB gene sets in the
C4 category). Our test data are composed of three lists of genes corresponding
to the Cancer Modules 1 (Ovary Genes), 2 (Dorsal Root Ganglia Genes), and 5
(Lung Genes).

4.2 Using FCA for Analyzing Genes

We apply FCA for analyzing a context describing genes of each Cancer Module
with MSigDB-based attributes. Table 2 shows five genes (involved in Cancer
Module 1) as a set of objects described by attributes which are the memberships
to gene sets from MSigDB. For example, CCT6A is in the set of genes (gene
set) whose standard name is Reactome Serotonin Receptors. Interestingly, by
querying our integrated database the analyst is able to select the predefined
gene sets to include in the formal context.

In order to extend the analysis of a list of genes, we need to take into account
the domain knowledge. Hence, the same experiment was conducted with the
addition of the KEGG hierarchy knowledge to the core contexts resulting in
three extended contexts. All KEGG categories and upper-level categories were
added as a set of attributes. If a gene is member of a KEGG pathway which in
turn belongs to a category and an upper level category then a cross 'x’ is added
in the corresponding cells in the extended context.

Table 2 shows five genes (from Cancer Module 1) with the addition of
one KEGG category (kc) and one KEGG upper level category (kuc). In the
given example CCT6A is involved in pathway KEGG PPAR Signaling Pathway
which belongs to the category kc:Endocrine System and upper level category
kuc:Organismal Systems. The lattices were generated and the statistics for each
Cancer Module are given in Table 3. The concepts were filtered and ranked based
on same criteria as in the first experiment.
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Table 2. A Toy Example of Formal Context with Domain Knowledge
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MYC X X

Table 3. Concept Lattice Statistics for the Cancer Modules with Domain Knowledge

Data Sets‘No. of Genes No. of Attributes No. of Concepts Levels

Module 1 361 3496 9,588 12

Module 2 378 3496 6,508 11

Module 5 419 3496 5,004 12
5 Results

In this study, biologists are interested in links between the input genes in terms of
pathways in which they participate, relationship between genes and microRNAs
etc. We obtained concepts with shared transcription factors, pathways, positions
of genes and some GO terms. After the selection of concepts with higher support,
we observed that there were some concepts with pathways from KEGG and RE-
ACTOME as their intent. These pathways are either related to cell proliferation
or apoptosis (cell death). The addition of domain knowledge effectively gives an
opportunity to obtain the pathway categories shared by larger sets of of genes.
Table 4 shows the top-ranked concepts found in each module. For example, in
module 5, we have confirmation that Cytokine Cytokine Receptor Interaction
pathway comes under the category Signaling Molecules and Interaction and up-
per level category Environmental Information Processing (Concept ID 4938).
The absolute support and stability of the concept containing only the category
Signaling Molecules and Interaction and upper level category FEnvironmental
Information Processing as its intent are higher (Concept ID 4995, Table 4) .
To sum up, we were able to discover interesting biological properties of sub-
sets of genes in the three test data sets. As for example, the Focal Adhesion
pathway was found to be associated to 17 genes in both modules 1 and 2; the
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KEGG category Immune System was found to be shared by 11 to 25 genes in the
three cancer modules (Table 4). Given the test data sets, these results are hope-
ful and constitute interesting positive control. This confirms that FCA-based
analysis offers a powerful procedure to deeply explore sets of genes.

Table 4. Top-ranked Concepts with Domain Knowledge

tor Interaction, kec:Signaling Molecules and
Interaction, kuc:Environmental Informa-
tion Processing

Dataset |[Concept |[Intents Absolute |Stability
ID Support
Module 1|9585 M2192:GGGAGGRR _-VSMAZ_Q6 51 0.99
9571 M2598:GO Membrane Part 27 0.99
9566 ke:Immune System, kuc:Organismal Sys-|25 0.99
tems
9402 chr19q13 10 0.99
9078 M10792: KEGG MAPK Signaling|12 0.87
Pathway, kc:Signal Transduction,
kuc:Environmental  Information  Pro-
cessing
Module 2{6502 M2192:GGGAGGRR _VSMAZ_Q6 44 0.99
6496 kc:Immune System, kuc:Organismal Sys-|{15 0.99
tems
6388 chr6p21 10 0.97
6335 M10792:KEGG MAPK Signaling|11 0.89
Pathway, kec:Signal Transduction,
kuc:Environmental  Information  Pro-
cessing
Module 55002 kuc:Cellular Processes 48 0.99
4995 ke:Signaling Molecules and Interaction,|26 0.99
kuc:Environmental Information Process-
ing
4933 chr19q13 11 0.99
4985 kc:Immune System, kuc:Organismal Sys-[11 0.99
tems
4938 M9809: KEGG Cytokine Cytokine Recep-|11 0.87

6 Conclusion and Future Work

Our study shows how Formal Concept Analysis can be applied to complex bi-
ological data. Data integration and FCA give the flexibility of using various
types of attributes (pathways, GO terms, positions, microRNAs and Transcrip-
tion Factor Targets) for analyzing a list of genes. Our approach gives an insight
into how domain knowledge can be introduced in the analysis with the help of
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FCA. As for future work, we plan to apply our approach to experimental gene
lists and take into account gene-gene relationships (physical Protein Protein In-
teractions), term-term relationships (Gene Ontology relationships, namely is-a,
part-of, and regulates) and relationships between gene positions. Moreover, in
order to efficiently deal with the relationships present within the data we can
use Relational Concept Analysis.
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A New Approach to Classification by Means of
Jumping Emerging Patterns

Aleksey Buzmakov'?, Sergei O. Kuznetsov?, and Amedeo Napoli'

1 LORIA (CNRS-Inria NGE-Université de Lorraine),Vandoeuvre les Nancy,France
2 National Research University Higher School of Economics, Moscow, Russia

Abstract. Classification is one of the important fields in data analysis.
Concept-based (JSM) hypotheses are a well-known approach to this task.
Although the accuracy of this approach is quite good, the coverage is
often insufficient. In this paper a new classification approach is presented.
The approach is based on the similarity of an object to be classified to
the current set of hypotheses: it attributes the new object to the class
that minimizes the set of new hypotheses when a new object is added
to the training set. The proposed approach provides a better coverage in
compare with the classical approach.

Keywords: Classification, Formal Concept Analysis, JSM-Hypotheses,
Jumping Emerging Patterns, Experiments

1 Introduction

Data analysis applications play important role in nowadays scientific researches.
One of the possible tasks is to predict object properties, for instance, prediction
of a molecule toxicity. Objects can be described in different ways, one of them
is by a set of binary attributes. For example, in chemistry domain, a molecule
could be characterized by a set of functional groups, belonging to the molecule.
Given a set of objects, labeled with several classes (like toxic and non toxic), the
prediction task is to estimate the class of some unlabeled object.

Jumping emerging patterns (JEP) is a well studied and interesting approach
to the classification[1, 2]. Given a set of classes, like toxic or non toxic molecule,
a JEP is a set of characteristics describing a class in a unique way (in the same
way as a “monothetic” property). For example, a set of functional groups say S
is a JEP when all the database molecules, including all functional groups from S,
are toxic. Most of the time, JEPs can be ordered, thanks to an ordering relation,
and w.r.t. domain knowledge. In particular, this can be found in [3-5] where
JEPs are studied through the so-called JSM-hypotheses.

Then, a classical way to classify an object w.r.t JEPs is to search for JEPs,
describing the object, and if these JEPs are of the same class say k, then the
object should be classified in k. If there is no such JEP or there are JEPs
of different classes, the object remains unclassified. Although for the classical
approach the prediction accuracy (the probability that the prediction is correct)
is quite high, its coverage (the probability that the object attributed to any class
by the classifier and this attribution is correct) is rather low. So a new method
is proposed with comparable accuracy and much better coverage. The method
relies on the MDL (minimal length description) principle, where the outcome
class for an object is the class, minimizing the number of associated JEPs.
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There are two main objectives in the paper. The first is to connect JEPs
with JSM-hypotheses; and the second is to suggest a new classification approach,
based on JEPs, and to check it experimentally.

The paper is organized as follows. In Section 2 definitions are introduced.
Then Section 3 describes the classical and the new approaches to classification.
Section 4 details the computer experiments and their results. And finally, Section
5 concludes the paper.

2 Definitions

2.1 Formal Concept Analysis and Pattern Structures

This section briefly introduces the main definitions on pattern structure in formal
concept analysis (see [6]) and emerging patterns (see [1,2]).

Definition 1. A pattern structure is a meet-semilattice (D,M). Elements of a
set D are called patterns.

Definition 2. A pattern context is a triple (G, (D,MN),d), where G is a set of
objects, (D,M) is a pattern structure, and § : G — D is a mapping function from
objects to their descriptions.

The recently studied interval patterns [7] and the pattern structure given by
sets of graphs [6] are examples of pattern structures.
Usually a formal context is introduced as follows [8].

Definition 3. A formal context is a triple (G, M, I), where G is a set of objects,
M is a set of attributes and I C G x M is a binary relation between G and M .

A ’classical’ formal context (G, M,I) could be considered as a special case
of pattern context (G, (D,M),d). The set of objects remains G, D = 2 with
a semilattice operation corresponding to intersection of sets, and § = g € G —
{m € M|(g,m) € I}. For instance a particular context is shown on Table 1. A
mapping function 6 maps the object g; to the set {m;, my, ms, mg, m7 }. For the sake
of simplicity, all further examples will refer to classical contexts.

Objs\Attrs|m1|ma|ms|ma|ms|me|m7 Object|Class
gi X | x x| x| x g1 k1
g2 X | x X X | x g2 k1
gs X | x X | x g3 ko
ga x| x X ga ko
gs X X | x|x gs ko
gs X ge ?

X X
Table 1: Formal Context (G, M, I). Table 2: Labeling function.
A Galois connection associated to the context (G, (D,1),4) is defined as:

A® = r|eEA(S(e)’ A - G (1)
&° = {e e GldC i)}, deD 2)

For a,b€ D,aC b< alb=a, and the operation (-)°° is a closure operator.

Definition 4. A pattern d € D is closed iff d°° =
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Definition 5. Generator of a closed pattern d € D is a pattern x € D, such
that z°° = d.

Definition 6. A pattern concept is a pair (A,d) such that A C G, d € D,
A® =d, A=d°. A is called the extent of the concept and d is called the intent.
The intent of a formal concept is a closed pattern (while the extent A is a closed
set of objects, i.e. A°® =A).

For example ({g1,g2}, {m1,mp, mg, m7}) is a concept w.r.t the context shown
on the Table 1. One of the possible generators of its intent is {my,ms, m7}.

2.2 Classification Concepts

The classification operation can be carried out in FCA using so-called hypothe-
ses. In classification there are a set of classes K and a mapping function £ : G —
K U {?}, where ‘7’ means unknown class of an object.

Definition 7. Given a certain class k € K, we note the set of objects belonging
to the class k as G+ = {g € G|¢(g) = k} and the set of objects, which are not
belong to class k as Gp— = {g € G|&(g) # k,&(g) #?}. A hypothesis for class k
is a pattern h € D, such that h° NGy_ =0 and A C Gyy : A° = h.

For example, {m;, my, mg, m7 } is a hypothesis for class k; because {m;, my, mg,m;}* =
{g1, g2} contains objects of only one class.

In itemset mining Jumping Emerging Patterns (JEP) are used for classifi-
cation [1,2]. Although the usual definition of a JEP does not involve pattern
structures, it can be convenient to introduce JEP w.r.t pattern structures.

Definition 8. A pattern d € D is a JEP for a class k € K when d° # () and
Vg € d®, &(g) = k.

According to definitions 7 and 5, a hypothesis for a class k € K is a JEP,
whereas a JEP for a class k € K is a generator of some hypothesis for the class
k. For the context on Table 1 and ¢ function from Table 1 {mg,m;} is a JEP for
the class k and it is a generator for {m;,my, mg, m7 }, which is a hypothesis.

3 Classification

This section introduces classification by means of Jumping Emerging Patterns
(JEP) in two different ways: the classical approach and the new approach.

For some class k € K, Hjy is the set of all JEPs for class k and Hy_ is
the union of JEPs for all other classes. The union of all JEPs is denoted as
H=H;, UHj_.

Definition 9. A JEP h € Hy describes an object g € G if h T ¢°.

According to the classical approach [3], a new object gne, should be at-
tributed to the class k € K iff there is a JEP for the class k, describing gpew
(3h € Hyy : h C 6(gnew)), and there is no JEP for other classes, describing the
object (Bh € Hy_ : h T 6(gnew)). This method will be referred as Cl-method.

For example, object gg should be attributed to the class k; because there
exists a JEP for the class k;, namely {mg, m;}, and no JEP for any other class.
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In contrast, it is not possible to classify the object with hypotheses, because the
corresponding hypothesis would be {m;,my, mg,m7} which does not describe the
object gg.

The classical approach usually works well but there are a lot of objects that
may not be classified [9]. Another problem is related to real-world data and inter-
pretation of the classification: one may expect to have only one JEP attributing
an object to a class. For instance, in the task of predicting toxicity of a molecule,
every JEP is a set of substructures and so ideally it should be the set of those
substructures which raises the toxicity of the molecule, while in practice there
are a lot of JEPs describing every object and so some of them have no relation
to the toxicity-specific set of substructures.

For going in this direction, one could recall a principle, widely used in natural
science: among all explanation of phenomena one should select the simplest one.
So a set of JEPs in our case should classify as many objects from training set as
possible, whereas it should not be too complicated. The whole number of JEPs is
rather arbitrary, and so it cannot be a measure of complexity. On the other hand
if an object should be attributed to a class by only one JEP, then it is natural
to suggest that ”important JEPs” a) covers all objects and b) that these JEPs
are rather general. So the complexity of a system of JEPs could be measured by
the minimal number of JEPs required to describe all the objects attributed to
any class.

3.1 Running Example

On Table 3a formal context is shown: real life objects, described by some prop-
erties, like color and weight. The objects are labeled whether they are natural
or human-made. The given labeling is shown on Table 3b. The task is to pre-
dict labels of Cat and Elephant. Tables 3e-3d are other labeling functions used
during classification procedure.

[«
3
ERER:
S| €25 Object |Made by Obj|M Obj|[M Obj|M Obj|M
Tree X x Tree Nature T |[N T |[N T [N T |N
Fungus ||x X Fungus Nature F |[N F |[N F |[N F |N
Velo x|x|x|x Velo Human V |H V |H V |H V |H
Car x|x| |x Car Human Car|H Car|H Car|H Car|H
Cat x|x| |x Cat ‘7 Cat|N  Cat|/H Cat|‘?”” Catl|?
Elephant||x|x Elephant ‘7 El |7 El | El [N El |H

(a) (b) () (d) () ()

Table 3: Running Example Formal Context. Figures 3b-3f are different corre-
spondences between objects and their classes ({-functions).

The JEPs for the context on Table 3a and labeling function on Table 3b are
the following: a(alive) — N, cm(can move) — H, m(metal) — H, 1(light), g(green) —
H. Neither Cat nor Elephant may be classified, as they both include JEPs, corre-
sponding to different labels (a — N and cm — H). But maybe we are still able to
classify them? Let us assume that Cat (or Elephant) is made by Nature (Tables

18



3c, 3e) and then that they are made by Human (Tables 3d, 3f). And then as a
response to the classification task we give the class of the best assumption.

Let us assume that the Cat is made by Nature, the labeling function is
shown on Table 3c. The corresponding set of JEPs is as following: a — N; m — H;
1l,g — H; cm,g — H. We should notice that the label (or class) of every object
from Table 3a can be explained by at least one JEP, i.e. for an object g there
is a JEP describing object g and corresponding to the class of object g. Let
now assume that object Cat is made by Human, the labeling function is shown
on Table 3d. The corresponding set of JEPs is as following: a,g — N; cm — H;
m — H; 1,g — H. Among these JEPs, there is no JEP explaining the class of
object Fungus, and so we can say that the assumption that Cat is made by
Nature is better than the assumption that Cat is made by Human, and so the
Cat should be classified to class Nature.

For the Elephant let us assume first that it is made by Nature, the labeling
function on Table 3e. The set of JEPs are a — N; m — H; 1,g — H; cm,1 — H;
cm,1 — H. They explain classes of every object from the context. Let us assume
that the Elephant is made by Human. The set of JEPs are a,g — N; a,1 — N;
cm — H;m — H; 1,g — H. They do also explain all the objects from the context
but we are still able to make a good prediction. For that we should calculate the
minimal number of JEPs required to explain every object from the set. For the
assumption that Elephant is made by Nature, one requires 2 JEPs to explain
every object from the context (a — N; m — H). For the assumption that Elephant
is made by Human, one requires 3 JEPs (a,g — N; a,1 — N; cm — H). Thus we
could say that although both assumptions are possible, the first one is more
simple (require only 2 JEPs for explaining every object from the context) and
the Elephant should be classified to class Nature.

3.2 The New Approach

We have a pattern context (G, (D,M),d) and a set of classes K. Every object in
G can either have a class from K or no class, denoted as ‘7’. A labeling function
& : G — KU{?} attributes an object g to a class k. Given a context (G, (D,M),d),
a set of classes K and a labeling function £, one can derive a set of JEPs named
H. A system of JEPs refers to a set of all JEPs, derived from a certain context,
a certain set of classes, and a certain £ function.

Definition 10. A coverage of a system of JEPs H is the set of objects, attributed
to some class and described by at least one JEP from H,
Coverage(H) = {g € G|&(g) #'?" and 3h € H,h T ¢°}.

Definition 11. A covering set of JEPs denoted by H* for a given system of
JEPs H is such that:

— H* C H,’
— all objects in Coverage(H) are described by at least one JEP from H*,
Vg € Coverage(H) : Ih* € H* : h* C ¢°

Definition 12. For a given system of JEPs H, a size of a minimal covering set
of JEPs MinCover(H) is the size of a covering set (for the system) with the
manimal number of JEPs among all others covering sets for that system.
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Our approach is based on the above definitions. The definitions consider a
JEP only w.r.t. a set of objects described by this JEP. And so any JEP among
JEPs describing the same set of objects can be considered, without changing
the outcome. It is more efficient to mine only closed patterns. Given a context
(G, (D,m),6), one can find a set of concepts and then derive a set of hypotheses
H for a given set of classes and a given & function. Recall that a hypothesis
d € D is associated to a concept (A,d) and every object in A is labeled by the
same class or by ‘?’. Actually a concept (A4, d) will not yield a hypothesis when A
includes two objects g1 and go such that £(g1) #'7, £(g2) #'?" and £(g1) # £(g2).

Now we can explain our classification approach. For every unclassified object
g € G the method proceeds as follows:

1. For every class k; € K, one should change the ¢{-function to return class k;
for the object g (instead of ‘?°), £(g) := k;. It leads to changing a system of
JEPs to H;. (For instance, in section 3.1 we assume that Cat and Elephant
are either made by Nature or by Human).

2. For every system of JEPs H; one should calculate its coverage (Coverage(H;)).
If the assumption £(g) := k; is right, all the objects from Coverage(H) and
the object g should be covered by H;. H; is called complete if Coverage(H;) =
Coverage(H) U {g} (In Section 3.1, only the system corresponding to the
assumption that Cat is made by Human was incomplete).

If there is only one complete system then the corresponding class is consid-
ered as a result class (as it was made for Cat in Section 3.1).

3. For every complete system H; one should calculate the size of a minimal
covering set of JEPs (MinCover(H;)).

4. The only system minimizing the size of minimal covering set corresponds
to the predicting label of the object (In Section 3.1, the assumption that
Elephant is made by Nature brings to 2 JEPs in minimal covering set, and
corresponds to the predicted Elephant class, i.e. Nature). If there are more
then one minimizing system then the object is unclassifiable.

The full method will be referred as M1 and the method of only first 2 steps
will be referred as M2. In Section 3.1 Cat can be classified with M1- and M2-
method, contrary the Elephant can be classified with only M1-method.

The task of finding minimal cover is NP-complete [10]. It can be shown that
difference between minimal covering sets sizes (| MinCover(H)—MinCover(H;)|)
of these two systems is often equal to 1. So an approximate solution for the min-
imal cover set problem can significantly the classification quality.

4 Computer Experiments

Section presents computer experiment and the results.

A database "Prediction Toxicity Challenge 2000-20017% was used for the ex-
perimentation. It consists of molecules labeled by the chemical toxicity with
respect to rats and mice of different sexes. Although there are some intermedi-
ate labels beside positive and negative. Only positive and negative labels were
considered. In Table 4 the sizes of training and test sets are shown.

3 http://www.predictive-toxicology.org/ptc/
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Male Rats|Female Rats|Male Mice|Female Mice
Positives Examples 69 63 68 79
Negatives Examples 192 229 207 206
Test set Positives Examples 84 63 55 66
Test set Negatives Examples 198 219 227 216

Table 4: Numbers of positives and negatives examples in the databases.

One of the way to describe a molecule for applying FCA is to consider it as a
graph, where vertices are atoms and edges are bonds between atoms. Then every
molecule can be considered as the set of frequent subgraphs, included into the
molecule graph. Frequent subgraph means that it is at least present in a certain
number of molecules graphs. After converting a set of molecules into graphs, one
could use different frequent graph miners [11,12] to find all frequent subgraphs.
Further a frequency limit will be given as percent of the whole molecule set.

To realize M1-classifier one needs a solver for the minimal cover set problem.
A greedy algorithm was used to solve the problem approximately. On every
iteration the algorithm selects the set, covering the maximal number of uncovered
elements. Algorithm stops when all elements are covered by the selected sets.

A " [+ M1-035x M2-035 + C1-035 0 M1-02 A +M1-035 x M2-035 + C1-035 0 M1-02
0851 ¢ M2:02 ¢ C1-02 0 M1-01 mM2-01 09 ¢ M2:02 ¢ CL02 0 M1-01 mM2-01
) ® CL01 2MI-005 & M2-005 4 C1-005 ® CL01 aMI-005 & M2-005 & CI-005
0.8 - 0.85 [ B
] g
g g
2 omp * | . g o8| .
< A’ 0 < . * R O
07| + g
m < o 0.75 N .
0.65 | 1
Il Il Il A Il Il 07 | Il Il Il Il <> Il ]
0.2 0.3 0.4 05 0.6 0.2 0.3 04 05 0.6
Coverage Coverage
(a) Male Rats (b) Female Mice

Fig. 1: The Classification Results.

The results for different frequency limit on the database of male rats are
shown on Figure 1a and results for female mice are shown on Figure 1b, results
for females rats and males mice databases are not shown for the sake of space.
Every point on the plots corresponds to the accuracy and coverage of some
classifier, while the molecule is considered as a set of frequent substructure. The
classifier and the frequency limit are written in the legend.

The quality of M2-classifier is usually higher than the quality of Cl-classifier,
whereas coverage of M2-classifier is decreasing with decreasing of frequency limit
(increasing the length of description). M2-classifier refers only to the coverage of
a system of hypotheses, thus the coverage is an important measure for the clas-
sification. The coverage of M1-classifier is much higher then coverage of classical
classifier, but the accuracy is worse then for the classical approach, especially
in the case of low frequency limit (long description). This could mean that ei-
ther M1-classifier is over-learned (it became too specific to training set) or it
is important for the algorithm to use an exact solution for minimal cover set
problem. As it was mentioned in the step 3 of our approach we need to solve a
minimum cover set problem, but for the sake of efficiency the greedy algorithm
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was used instead of the exact solution. With decreasing of frequency limit the
size of minimal cover is increasing, and so an absolute error in defining the size
of the minimal cover is increasing as well.

5 Conclusion

In the paper a new approach to classification was suggested. The quality of this
approach was checked and it was shown that the number of objects covered by
a system of hypothesis is an important characteristic for classification task.

Although the new approach classifies more objects than the classical ap-
proach, in some situations it has worse classification quality. One of the possible
reasons is an approximate solution for the minimal cover problem. The influence
of the approximate minimal cover problem solution should be checked.
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Abstract. In this paper we present a novel approach to handle queryiega
concept lattice of documents and annotations. We focusepriblem of “non-
matching documents”, which are those that, despite beingsgcally relevant
to the user query, do not contain the query’s elements andehesnnot be re-
trieved by typical string matching approaches. In orderrid these documents,
we modify the initial user query using the concept lattice@giide. We achieve
this by identifying in the lattice a formal concept that regents the user query
and then by finding potentially relevant concepts, idertifis such through the
proposed notion ofousin conceptsFinally, we use a concept semantic similar-
ity metric to order and present retrieved documents. Thenroantribution of
this paper is the introduction of the notion @fusin conceptsf a given formal
concept followed by a discussion on how this notion is ustgulattice-based
information indexing and retrieval.

1 Introduction

As the amount of information grows, the ability to retrievecdments relevant to the
needs of the user increasingly becomes more importantr&eyplications have been
proposed, regarding this task, in the field of InformatiorriReal (IR). However, as
the information becomes more complex (not only text, bud asiltimedia documents)
and specific (domain-oriented), the capacity to organibedmes as important as the
capacity to retrieve it.

Formal Concept Analysis (FCA) is a robust and widely usech&aork to organize
objects based on their relations through their attributea concept lattice [6]. Con-
cept lattices have been used in the past to support InfoomBRigtrieval tasks and they
have been found to have better or comparable performancaadtion to traditional
approaches, such as Hierarchical Clustering and BesthiVRaémking. We argue that
this performance can be further enhanced consideringrissais concept and semantic
similarities and lattice navigation techniques.

* The work of loanna Lykourentzou in the present project ipsuied by the National Research

Fund, Luxembourg, and cofunded under the Marie Curie Astadithe European Commission
(FP7-COFUND).
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In this work, we present an approach to retrieve documeats & document-term
concept lattice, considering that concepts carclosewith respect to their position
within the lattice and semanticalsimilar to one another. We use both of these notions
to find which are the most relevant documents for a given useryq

The rest of this paper is organized as follows: Section 2gmissthe related re-
search literature. Section 3 briefly introduces FCA andemtsour proposed approach
for navigating the lattice using the notion obusin conceptsas well as for ranking
the selected concepts with respect to their semantic sityil&ection 4 presents and
discusses the experimental results and finally section$epts the conclusions of our
work.

2 Related Work

2.1 Concept lattice-based Information Retrieval

Formal concept analysis is a data representation, ordganizand management tech-
nigque with applications in many fields of information scienanging from knowledge
representation and discovery to logic and Al [15]. In the teecade researchers have
also focused on examining the potential of FCA addressinglpms in the field of In-
formation Retrieval [14]. Under this light, the term Contégitice-based Information
Retrieval is used to describe the problem of retrievingrimfation relevant to a given
user query, when the document collection that containsrife@mation is organized
within a concept lattice. Some of the IR tasks that FCA anaephlattices have so far
been applied on, include query refinement and expansiagration of query and nav-
igation and support of faceted search ([4, 2]). Among thetmeggesentative works in
the field are the works of Carpineto and Romano, who introtlhueenethod of Concept
lattice-based ranking (CLR) [1].

The CLR method consists of three main steps: i) constructiohe formal context
of documents-terms and building of the corresponding coiiagtice ii) insertion in the
lattice of a new concept that represents the user queryg @sgubset of the attributes
of the formal context and iii) retrieval and ranking of thder@ant concepts using a
nearest-neighbour approach, which depends on their tgjpalopath distance, within
the lattice, from the original concept. The topologicalhpatetric used is called distance
"ring”, and it measures the radius of distance between twepts, using as distance
metric the length of the shortest path between them. Themigtgic provides a partially
ordered retrieval output, according to which all the docota¢hat are equally distant
from the original concept, i.e. belong to the same distaimg, are given the same
ranking score.

Carpineto and Romano, also compare the CLR method with tiverdhforma-
tion retrieval methods, namely Hierarchical Clusteriragéd Ranking (HCR)[7] and
Best-match ranking (BMR). CLR is found to produce betteulisscompared to HCR.
Compared to BMR, it produces worst results when comparethi@metrieval over the
total document collection and better results, when onlyfits¢ documents of the re-
trieval result are considered. However, CLR was better bath BMR, HCR when
considering the retrieval of non-matching documents, doeuments that do not match
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the user query but share common terms with documents thattlchrthe user query)
The main advantage of the CLR method is that, in contrastherddtatistical similar-
ity measures that calculate the distance between two datur@presentations using
only the characteristics of those representations, thiedadllows to also incorporate
the similarity that two document representations have gaurds to the context, i.e. the
whole document of collections, in which they are found.

The limitations of the traditional CLR method include fiystthe need to build the
whole lattice before retrieving the related concepts. T9s8e determines the complex-
ity and computational time required to address the prob#erd,it may result in non-
realistic solutions for large document collections, like instance the TREC dataset
([4]). Another issue, identified by the authors is that pegh@LR should be combined
with BMR, since they perform well in different types of docanis (non-matching and
matching respectively). Another set of limitations, moe¢ated to the present work,
refers to the ranking method used and specifically to thetffatthe retrieval and rank-
ing of the related concepts is made taking into account dryr topological relation
with the original user query concept. Specifically, due ®uBe of topological distance
rings as a metric of concept similarity, the CLR method doasdistinguish between
generalization and particularization, when moving from ¢oncept of the original user
query to other concepts. This limitation is critical, as iayrlead to a loss of the se-
mantic similarity between the retrieved and the originalaapt and it is explained in
more detail in the section 3 when introducing our proposethotefor concept-based
information indexing and ranking.

To address these limitations, in this paper we propose d appeoach, which seeks
to ensure semantic similarity with the original user quéagth through the way that
the lattice is traversed and through the way that the cos@ptranked. In particular,
we introduce a new topological-based concept charadtgristlled cousin concepis
to navigate the lattice and retrieve candidate relatedeqotsc In parallel, for ranking
the retrieved concepts we do not rely only on structural ephsimilarity features,
but instead we use a metric that allows the weighting of bttictural and semantic
similarity aspects [5].

3 Methodology

In order to present our approach, first we present a briefrii¢i®n to Formal Concept
Analysis (FCA). The basics of FCA are introduced in [6], b recall some notions
useful for its understanding in the following.

Data is encoded in a formal contekt = (G, M, I), i.e. a binary table wher&
is a set of objects)M a set of attributes, anfl C G x M an incidence relation. Two
derivation operators, both denoted hyormalize the sharing of attributes for objects,
and, in a dual way, the sharing of objects for attributes:

" p(G) — p(M)with A ={m e M |Vg € A,gIm}

" (M) — p(G)with B' = {g € G|VYm € B,gIm},

wherep(G) and p(M) respectively denote the powersets@fand M. The two
derivation operatorsform aGalois connectioetweeno(G) andp(M ). The maximal
sets of objects which are related to the maximal sets obatas correspond to closed
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sets of the composition of both operatardenoted’, for p(G) andp(M) respectively.
A pair (A, B) € p(G) x (M), whereA = B’ andB = A’, is aformal conceptA
being theextentand B being theintentof the concept. The s€l of all concepts from
K is ordered by extent inclusion, denoted By, i.e. (A1, B1) <k (A2, B2) when
Ay C Ay (orduallyBs C By). Then,Lx = (Cx, <x) forms theconcept latticeof K.

Typically, a concept lattice to index documents is creatednfa formal context
Kindea = (G, M, I) whereG is a set of documents and is a set of terms. Thus, the
set] represents documeannotationgi.e. g/m indicates that the documeais anno-
tated with the termm). In a nutshell, to retrieve documents given a conjunctiverg?
qg = {m;},m; € M (m; in the query are hereafter referredleyword}, the goal is
to find those formal concepts!, B) whereB ~ ¢ and to retrieve the documents.h
The usual approach is to insert into the latticgueery concepC, = ({0}, ¢) [11, 10,
1] the intent of which contains all the keywords in the usegrguDifferent techniques
have been proposed to navigate the lattice, however theywnedopological properties
(navigating the super-concepts and sub-conceygts)iof the concept lattice to search
for documents. Although topology-based measures are Iusefetrieverelated docu-
mentsfrom a query, there are some drawbacks that could be overadtim¢he use of
semantic similarity.

The first disadvantage with the navigating in the hierardhg¢/prefers to the gen-
eralization of the query. By obtaining the super-concepte®query concepinserted
in the lattice, a level of granularity already provided by thser is lost. For example,
for a query of the fornfcomplications, arthroscopy,’a query concepf, = (4, =
{0}, By = {complications, arthroscopy}) is created within the lattice. Any super-
conceptCly,;, = (Asup, Bsup) Of the query concept has to comply wiBh,,, C B,. In
this case, only three super-concepts can be obtaifgg; = (As.p1, {complications),
Cisup2 = (Asup2, {arthroscopy) andCiyps = (Asups, {0}). However,A,,,,1 contains
documents abowtomplicationsin any aspect leading to a decrease in precision. The
same happens with documentsAn,,,2 containing documents aboatthroscopyin
general whether the user had already specified a restricicghem.Cs,,,3 represents
the supremum wherd,,,3 contains every possible document, this, of course, is the
worst case scenario where the system has no restrictiopgrieve documents.

The second disadvantage is about the specification of the.gBye obtaining the
whole set of sub-concepts of the query concept the systeomassrestrictions not
provided by the user. While this is the main idea beltjndry expansiof8] the problem
is that there are no discrimination with the sub-concemsghould be used to retrieve
documents. For example, given the same query used in theXasiple and the sub-
conceptLsupr = (Asup1, {complications, arthroscopy,infection}) andCsypa =
(Asupz, {complications, arthroscopy, practice}), the system cannot decide whether
the documentsinl,,;; or the documents id,, ;> are the most relevant. From a human
perspective, it could be assumed that documents,i; may be of more interest for
the user since aimfectionis a possibleomplicationin the context of a surgery such as
anarthroscopyand hence they should be retrieved first. On the other pideticeis a
general word which may lead to non-relevant documents.

3 Keywords and the conjunction operator
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Regarding these problems we propose a technique to impnéaeniation retrieval
based on concept lattices using the idea of “concept siityilaprovided by Formica.
We combine this idea with a novel heuristic to navigate thtéckain order to find those
concepts holding relevant documents for a given query.

3.1 Navigating the lattice

Given the formal context;,.4... and the query = m; at the beginning of this section,
a very simplistic approach to retrieve documents relevautiié query is to find those
concepty4;, B;) wherem; € B; : Vm; € ¢ defined in [13] agetrieve algorithm
Actually, it is possible to find a single conceft = (A4, B,), whereB, holds the
minimal set of words containing all keywords. Subsequemly contains the maxi-
mal set of documents containing all the keywords. We refe&r'to= (A,, B,) as the
matching concept.

It should be noted here that, for a given queryhe matching concegt, may not
exist. This is more likely to happen if the number of keywoigigigh. In a complete
concept lattice (not filtered through any means and constdugsing the total amount
of information), such a case would actually mean that thezena documents which
comply with all the restrictions provided in the user's guéihile some strategies
can be implemented to overcome this issue (asking the ugeotide a simpler query
or manipulating the query in order to answer) for the scop#hisf work we do not
elaborate on this and we rather consider the case of anrexistatching concept.

Once the matching conceft, = (A4,, B,) is found, all documents inl, can be
retrieved to the user. Since the number of documents,imay be not sufficient, what
is important, in the following, is how to complete the answegth more documents
using the lattice.

A simple strategy would involve the hierarchy 6f,, however every sub-concept
(Asq, Bsq) <k (Aq, By) will provide no different documents than thoseAn since
Asq C A, Super-concepts of, are not useful either because of the problems de-
scribed in the beginning of this section regarding genzaiittn. Hence, in order to
complete the answer with more documents, it is necessargtirfrom the concept
lattice some formal concepts which are neither super- niscsimcepts of 4,, B, ). To
achieve this, we use the notion@jusin conceptdefined as follows.

Definition of cousin concepts:Two concepty A;, B1) and (4, B2) which are
not comparable foK: are said to beousinsiff there exists(As, Bs) #.L such that
(Ag, Bg) <k (Al, Bl) and (Ag, Bg) <k (AQ, Bg) anddlc((Ag,Bg), (1437 Bg)) =1
(where L is the bottom concept andc measures the minimal distance between two
formal concepts in the lattick). Intuitively, this means thatA;, B1) and(As, By) do
not subsume each other and thdt, Bs) can be either the lower bound or be subsumed
by the lower boundA;, B1) M (A2, Bs) (where(A;, B1)M (A2, By) denotes the lower
bound Of(Al7 Bl) a.nd(flg7 BQ)

The use of cousin concepts allows us to move in the lattice fsne concept to an-
other using the relations that the elements in their intpassess and that are expressed
through their common subsumer. In the example on Figurg&,lis a cousin concept
of C because of concelgi;. The attributesarthroscopy”, “complication” and*in-
fection” are all related through the intent of concépt In this small example, i€ is
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D1,D2,03

D1,D3,D5 D1,D2,D4

X
} {Arthroscopy, Complication}

X X
{Arthroscopy, Practice {Arthroscopy, Infection}

D1,D3 D1,D2
X X
{Arthroscopy, Complication,  {Arthroscopy, Complication,
Practice} Infection}

Fig. 1. Example. Five concepts within a lattice, extents and istané shown. Arrows indicate
queryexpansiorandmodification

the matching concept, moving from it to concéjtis the same as replacing the word
“complication” with the word“infection” in the query. The extent of concept will
contain documents, some of which are different from thos€,0&nd therefore they
can be used to complete the answer provided'by

We may also notice that the use@f works as ajuery expansioradding attributes
to the original user query, while the use@f works as eguery modificationsince its
attributes are a subset of the attribute€’ef

Using the entire sub-hierarchy of the matching conceptl@ebieg the infimum)
allows us to retrieve several cousin concepts which can &e tescomplete the answer
far beyond the initial set of documents contained in the hiatc concept’s extent.
Each cousin concept is a possilgleery modificatiorobtained from ajuery expansion
represented by the sub-concepts of the matching concept.

Although cousin concepts are useful to expand the answeefimesenting query
modifications, their use may entail the same problem desdiitothe beginning of this
section, as the second disadvantage of structure-baseémoretrieval. In the same
example on Figure 1 concepts andCy are cousin concepts @f;. However, in this
scenario the system cannot decide which set of documentgeée those of’; and
Cy, should be retrieved first.

A way to rank cousin concepts is therefore necessary in eod#ecide which doc-
uments should be retrieved to the user first. In this paperoasodising the measure of
concept similarity proposed by Formica [5].

3.2 Concept ranking through similarity
The ranking of the retrieved cousin concepts is performétgus semantic similarity

metric proposed by Formica[5]. That is, given two formal ceptsC; = (A4;, B1) and
Cy = (As, Bs) the similarity between them is defined as:

|A1 ﬁA2| w4 M(BI>B2)
maz(|Ai, |Azl) mazx(|Bi, | Bal)

sim(Cy,Cy) = * (1 —w) 1)
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where0 < w < 1 is a weighting parameter anti{ (B, B») is the maximization
of the sum of thenformation contensimilarities between each possible pair of terms
created using one term frofd; and another fronBs. Information contensimilarity
between two terms is measured using their distance in adelxierarchy and/or their
co-occurrence in a text corpus. The full explanation of thétric is beyond the scope of
this paper. For further information, the reader is refetodtie original work of Formica
[5].

Consider the example of Figure 1: ConceftsandC, are both cousin concepts
of the matching concept,, and they have the exact same structural features, i.e. the
cardinalities of the intersections of their extents/itsenith the matching concept are
the same, as well as their extent/intent cardinalities. él@g, when using the semantic
similarity metric defined above withh = 0.5 and Wordnet as the external lexical hi-
erarchy, we observe thatm(Cy, Cy) = 0.7275, while sim(C1, Cy) = 0.45, because
the pair(complication, infectionhas a higher semantic relation than the geampli-
cation, practice) In this way, we may rank and retrieve the documents of canCep
higher than those of conceg,. Differentiations in the weight value allow for dif-
ferentiations in the preference over the structural (fromextents) and semantic (from
the intents) similarities of the compared concepts.

4 Experimental results and discussion

We applied our approach using the MuchMudataset, which contains annotated med-
ical document abstracts (7822 documents, 9485 single di-maoitd terms). In order to
answer a given user query we follow a 3-step knowledge daggerocess, as follows.

Step 1 - Data preprocessing: Pre-filter the set of documentsnd terms Since the
creation of a lattice containing the full set of documesetsits would be computation-
ally expensive, we create a reduced lattice for each givenqugery. To do so, we imple-
ment a simple pre-filtering strategy of iterative expansmnilar to the one described
in [4]. Given a conjunctive query = {¢;} we fetch all documents,, that contain all
the keywords in the query. Afterwards, we obtain all the ®tjrthat these documents
contain. Finally, we fetch all the additional documedts which contain any of these
terms. At the end we obtain a setdf + d,,, documents ant} + ¢; terms which is used
to create a formal context. For the query= {“complication”,“arthroscopy” }, this
process returns a set of 11 initial documents, which in teads$ to an expanded set of
177 terms and 7560 documents.

Unfortunately, this strategy yields more than 95% of thepost documents be-
cause of highly frequent terms. To avoid this, documents witumber of terms below
the average (in the above example, 7 terms) are not includéuki expanded set of
documents (3485 documents for the example). It should bedrtbat the pre-filtering
strategy can be further improved considering weightingégues such as tf.idf, piv-
oted normalized document length [9] or heuristic approadpecifically focusing on
the reduction of irrelevant concepts in a FCA lattice [4].

4 Wordnet is a widely-used free semantic dictionary orgahinea hierarchical manner [12]
Shttp://muchnore. df ki . de/
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Step 2 - Transformation: Concept lattice creation The creation of the concept lattice
is straightforward since we rely on a fixed framework (CoroolKit®). For the example
of queryq, we obtain 134718 formal concepts without using supportipigin

Step 3 - Data mining & Evaluation: Retrieving documents fromthe lattice The
retrieval step consists of three sub-steps, describecifottowing.

1. Find the matching concept.We search for the matching concepy in the lattice
using a level-wise algorithm, starting from the supremuime Tatching concept
C, is the closer concept to the supremum which contains in ienirall the key-
words provided in the query. The existence of the matchimgept is predicated in
the assumption of a conjunctive query to pre-filter the ddtasd create the formal
context. In the case that there are no documents contaihiegst all the keywords,
the query is consider unsuccessful and the retrieval psasasopped at step 1. The
documents in the extent of the matching concept are rettigvéhe user and they
are hereafter referred to agact answer

2. Find the cousin concepts of the matching concep€ousin concepts are obtained
for the matching concept and for each of its sub-cona@pta list calledcandidate
answersis created storing the pajC;, C;) whereC; < C, and(} is a cousin
concept ofC;. For ¢,, the candidate answerkst contains 2301 (concept, cousin
concepts) pairs.

3. Rank the cousin conceptsThe ranking process is performed using the similar-
ity measure described in section 3.2. Every pair (conceptsio concept) from
thecandidate answerst is compared, or what is the same, egciery expansion
is compared to its correspondentery modificationFormica’s concept similarity
was implemented using Wordnet [12] as a lexical hierafctie Brown corpusas
a base to obtain term frequencies and a modified version dfitimgarian algo-
rithm [8] to match terms from both inter§tsThe experiments here presented where
performed with a value ob) = 0.5.

Table 2 shows the results for two queries executed using élerithed approach.
Forgs = {“arthroscopy”,“complication” } theexact answeretrieved 11 documents of
which 7 are relevant to the user. Ttlese answercomposed of the documents retrieved
from the ranked cousin concepts, contains 100 documentkicf@ are relevant to the
user. Therefore, out of the 21 documents relevant to thethseapproach was able to
retrieve 13.

It is of special interest to analyse the characteristicshefdbtained results. The
cousin concept with interjpints, surgical aspects, complication, diagnostas a sim-
ilarity of 0.71 with the concept with interairthroscopy, surgical aspects, complication,
diagnosticwhich is a sub-concept of the matching concept createdf@nd hence,
does not have additional documents than those alreadgvetti What can be appreci-
ated here is that the algorithm works firstly by expandingatfiginal query with related

Shttp://coron.loria.fr/site/index.php

" Wordnet is a dictionary where terms are grouped by synonysyaset) and ordered in a
hierarchical tree by the hypernym relation.

8 The Hungarian algorithm minimizes the sum of values in tlegdnal of a square matrix.
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terms (fromarthroscopyto surgical aspecfd and secondly by modifying the expanded
guery with a semantically similar term (froarthroscopyto joints). The above process
is illustrated in Table 1.

Table 1. Query expansion and modification.

matching concept  sub-concept cousin concept
query expansion modification
arthroscopy — arthroscopy  — arthreseepy — joints
complication complication complication complication
surgical aspects surgical aspects  surgical aspects
diagnostic diagnostic diagnostic

The second query in Table 2 is also of interest in the sensé thdicates algorithm
robustness. The word laparoscopic is not present in Wordreking it not suitable for
the comparison in the similarity measure. This meansléparoscopiaan be replaced
with any other term since the algorithm is not able to meathelifference. However,
since the similarity measure relies also in extent intéisecthe algorithm will try to
replacdaparoscopiavith terms used by documents similar to those in the exaetens
In that way, the first ranked close answer is correct and feniriscomplication, risk,
cholecystectomyotice that in this case the algorithm does not concludettteaterm
risk is semantically close to the tedaparoscopicbut that it is the best term to replace
the latter in the query.

Table 2. Results for two queries.

Exact answerClose Answer Total Answers
Query correct/found correct/foundcorrect/expected
arthroscopy, complication 7/11 6/100 13/21
complication, laparoscop 3/3 3/100 6/7
cholecystectomy

9]

5 Conclusions

In this paper we present a technique to use a concept latticéné retrieval of doc-
uments from a given user query. The proposed techniquersliffem previous ap-
proaches in two main aspects: the lattice navigation dlgoris not restricted to the

% an arthroscopy is a knee surgery
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hierarchy of the query concept and the ranking algorithnagsel on the semantic sim-
ilarity, rather than on the structural characteristicshef tompared concepts.

In terms of navigation, we introduce the notiorcotusin conceptsvhich represents
qguery modificationghat can be used to retrieve documents different from thwsetty
related to the query. In terms of ranking, we use externaikedge sources (a lexical
hierarchy and a text corpus) to measure semantic similanty order the retrieved
cousin conceptBy relevance to the initial query.

We illustrate our approach using two examples from a dat#€saedical document
abstracts. We also explain certain limitations of the peggbapproach, mainly regard-
ing the performance the concept lattice construction aadathailability of the terms
of the user query in the dataset. Currently, we are applyirggapproach on the same
dataset but on a full scale, in order to measure precisiomeadl, as well as to compare
the proposed technique with other Information Retrievatiesbf-the-art techniques.
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Abstract. We propose in this paper basic operations with limited ac-
cess to the objects in the table, which can improve the computation
time. Experiments were conducted with Joomla!, a content management
system based on relational algebra, and located on a MySQL database.
This work follows the results presented in [5].
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1 Introduction

Galois lattice is a graph providing a representation of all the possible correspon-
dences between a set of objects (or examples) O and a set of binary attributes (or
features) I. Galois lattices (or concept lattices) were first introduced in a formal
way in the graph and ordered structures theory [2,1,4].

The concept lattice is a rich and flexible navigation structure automatically
derived from the context, and can therefore be considered as a dynamic and
complete space search enables data description while preserving its diversity.
Querying and navigation can be freely combined: to each user request corre-
sponds a concept of the lattice as answer ; the user can then improve its search
either by amending its request, or by on-line browsing arround the concept in
the lattice structure.

In this paper, we propose an implementation of these basic operations with
Limited Object Access, aiming to improve time computation for a large amount
of objects in large databases.

This paper is organized as follows. In section 2, we describe the concept
lattice and the closed set lattice. In section 3, we present the motivations that
have conducted this word. In section 4, we describe our basic operations with
limited object access. In section 5, we present some experiments.
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2 Concept lattice: definition and generation

Definition. The concept lattice is a particular graph defined and generated from
a a binary table (also denoted a formal context) C described by a relation R
between a set of objects O and a set of attributes I. We associate to a set of
objects A C O the set f(A) of attributes in relation R with the objects of A:

flA)={yel|zRyVxe A}

Dually, to a set of attributes B C I, we define the set g(B) of objects in relation
with the attributes of B:

g(B)={r €O |zRyVYye B}

These two functions f and g defined between objects and attributes form a
Galois correspondence. A formal concept represents maximal objects-attributes
correspondences (following relation R) by a pair (A, B) with A C O and B C I,
which verifies f(A) = B and g(B) = A. The whole set of formal concepts thus
corresponds to all the possible maximal correspondences between a set of objects
O and a set of attributes I. Two formal concepts (Ay, By) and (A, Bg) are in
relation when they verify the following inclusion property:

Ay C Ay

(AlaBl) < (A27B2) A ’ (equivalent to B; C B2)

3 Motivations

The existence of a concept lattice underlying a data table allows to consider an
information retrieval strategy combining querying and navigation by a browsing
in this lattice as in an area of research. Indeed, the user request is a concept of a
lattice, and the user can then improve its search either by amending its request,
or by browsing in the lattice structure. From a computational point of view, such
a mechanism of information retrieval by request and by navigation requires two
main operations:

1. Generation of the smallest concept (g(B), f(g(B)) containing a given subset
B of attributes: B is the request, the objects part f(g(B)) of the concept is
the answer, g(B) are inferred attributes.

2. Generation of the immediates successors of a given concept (A, B) for a
browsing in the lattice by computing the inclusion-maximal in the set system
F4 defined on O by Fa = {g(z+ B) : « € I\B}.

Large data are often described by a huge amount of objects, as in databases
for example where the number of recordings (i.e. objects) can be huge, indexed
using sophisticated key-indexation techniques. We propose in this paper an im-
provement of these basic operations with two limited objects access strategies:
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A storage improvment by considering the restriction of the concept lattice
to the attributes, namely the closed set lattice.

A computation improvment by considering in the operations the cardinality
of the subset of objects instead of the subset itself, using the count function.

Name: Immediates_Successors_LOA
Data: A context K ; A closed set B of the closed set lattice (C;,C) of K
Result: The immediate successors of B in the lattice
begin
initialize the Succp family to an empty set;
foreach z € I\ B do
add = true;
foreach X € Succp do
\\ Merge x and X in the same potential successor
if ¢((B+x) =c¢(B+ X) then
if ¢(B+ X 4+ z) = ¢(B + x) then
‘ replace X by X + z in Succp; add=false; break;
end
end
\\ Eliminate x as potential successor
if ¢(B+z) < ¢(B+ X) then
‘ if ¢(B+ X 4+ z) = ¢(B + z) then add=false; break;
end
\\ Eliminate X as potential successor
if ¢(B+x) > ¢(B+ X) then
‘ if ¢((B+ X 4+ z) = ¢(B + X) then delete X from Succp
end
end

\\ Insert x as a new potential successor ;
if add then add {z} to Succp

end

return Succg;

end

Algorithm 1: Generation of the immediate successors of a closed set in the Hasse
diagram of the lattice (C;, C)

Closed set lattice. Instead of a concept lattice, it is possible to consider its
restriction to the attributes in order to limit the storage of huge ammount of
objects in each concept. A nice result establishes that any concept lattice (C, <¢)
is isomorphic to the lattice (Cy, C) defined on the set I of attributes, with C;
the restriction of C to the attributes in each concept. The lattice (Cy, C) is also
known as the closed sets lattice on the attributes I of a context (O, I, R), where
the set system Cj is composed of all closed set - i.e. fixed points - for the closure
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operator ¢ = go f - i.e. a map that is isotone, extensive and idempotent):

Cr=f{p(X) : X1} (1)

The closed sets L = ¢(@) = f(O) and T = I respectively correspond to the
bottom and the top of the closed set lattice. See the survey of Caspard and
Monjardet [3] for more details about closed set lattices.

Therefore, each smallest concept (g(B), f(g(B)) containing a given set B of
attributes is replaced by the closure ¢(B) = f(g(B) on the attributes. Thus,
only the attributes part is stored.

The count function. Moreover, we propose to reinforce the object access limita-
tion by considering the cardinality of the subset g(B) instead of the subset itself
in the treatment. The count function ¢ associates to any subset X of attributes
the cardinality of the subset g(X): ¢(X) = |g(X)|

It corresponds to the notion of support introducing in rules extraction from
data-bases, and is in particular used by Titanic algorithm [6]. We use the count
function c instead of the closure operator ¢ since ¢ and ¢ possesses together nice
properties, VX, X' C I:

XCY = cX)>cY) (2)
P(X) = (V) = c¢(X) = ¢(Y) (3)
X CY and ¢(X) = ¢(Y) = ¢(X) = o(Y) (4)

4 Basic operations in a lattice with limited objects access
Using the closed sets lattice (Cy, C) instead of the whole concept lattice (C, <¢)
gives raise to a storage improvement since only the attributes part is stored.
Using the count function, the two main operations can therefore be reformulated
as follows:

Generation of the closed-set o(B) of a subset B of attributes. It can be performed
using the following equality:

e(B)=B+{ze€l\B : ¢(B)=c¢B+z)} (5)

This equality is a direct consequence of the third property of ¢ together with the
isotone property of ¢ (i.e. X C X' = ¢(X) C p(X’)).

Generation of the immediates successors of a closed set B. A closed sets lattice
can be generated using an algorithm similar to Bordat’s algorithm, where the
immediate successors of a closed set B in the Hasse diagram of the lattice are
the inclusion-minimal subsets of

Fg={o(B+z) : xcI\B} (6)
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In our previous work [5], we present an incremental algorithm by testing, for
each attribute x of I'\B and each already inserted potential successor X C I\ B,
the inclusion between ¢(B + X) and ¢(B + z):

Merge = with X when ¢(B + x) = (B + X).
Eliminate X as potential successor of B when ¢(B + z) C (B + X)
Eliminate = as potential successor of B when ¢(B + X) C ¢(B + )

Insert = as potential successor of B when z is neither eliminated or merged
with X.

Ll

The inclusion test between ¢(B 4+ X) and ¢(B + z) can easily be performed
using the count function ¢ and the following proposition deduced from Prop. 1
in [5]:

Proposition 1. o(B+ X) Co(B+1z) <= ¢(B+X +z) =c¢(B+ X)

=: Consider that ¢(B + X) C (B + z). The equivalence between inclusion
and intersection set operations (C C D <= C = C N D) allows to de-
duce that (B + X) = o(B + X)N (B + ). Since ¢(B+ X)Np(B+z) =
p(B+X)ANp(B+x) =¢(B+ X +x), then p(B+ X) = p(B+ X +z). We
conclude by ¢(B + X + x) = ¢(B + X) using the second property of the count
function ¢ (see Eq. 3).

«: Consider that ¢(B + X + z) = ¢(B + X). By Eq. 4, and since B+ X C
B+ X + z, we deduce that ¢(B + X + ) = ¢(B + X), and we conclude by
@(B+ X) C ¢(B + z) as above.

In the case where (B 4+ X) C (B + z), the strict inclusion has then to
be tested in order to decide if x has to be deleted as potential successor, or
merged with X. Using Eq. 2 and Eq. 3, this test can be performed by checking if
¢(B+X) > ¢(B+z) or ¢(B+X) = ¢(B+x). The case where ¢(B+1z) C p(B+X)
is dualy tested in order to decide if X has to be deleted or not as potential
SUCCESSOor.

The complexity of computing the immediate successors of a closed set B
using the Immediates_Successors_LOA algorithm is:

(U= 1BN(L =B

5 *O(c(B+ X))

which leads to
O((|1] = |B])* * O(¢(B + X)))

using the big O notation.

This has to be compared with O(|I]? x |O]) of the Bordat’s algorithm. In
addition the cost O(c(B + x)) of computing the cardinality of objects satisfying
the required properties can be based on multiple keys and robust algorithms
used in databases that do not need to load all data for computing a cardinality

[5]-
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Calculating the sub-concepts of {}
100000 objects; 20% of attributes per object
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(a) 100.000 objects and attributes varying from 10 to 50,
each object randomly described by 20 % of the attributes

Calculating the sub-concepts of {}
100000 objects; 50 attributes
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(b) 100.000 objects and 50 attributes, each object described
by random attributes varying from 2 to 49

Fig. 1. Calculating the immediate successors of ()

5 Experimentations

In the experiment, we use a dataset composed of 100.000 objects described by
a random set of attributes varying from 10 to 50, each objects described by a
random set of attributes. The dataset is stored in a database MySQL 5.5.17.
We have implemented our algorithms using PhP 5.3.8 using a laptop with 8
processors clocked at 1.73GHz and 8Gb of memory. The counting of objects
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Calculating the closure of a set of attributes

100000 objects; 50 attributes
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(a) Average time of a closure generation for attributes vary-
ing from 1 to 50 with 100.000 objects and 50 attributes, each
object described by 10, 20, 30 then 40 random attributes

Calculating closures of singleton attributes (join-irreducibles)
100000 objects; 50 attributes
250
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Seconds

100

50
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Number of attributes per objects

(b) closure of attributes with 100 000 objects, 50 attributes,
each object described by random attributes from 2 to 49

Fig. 2. Closures computation

satisfying a set of properties is realised by the SQL request comparing indexes
with a constant:

select count (%) from attl=1 and att2=1

We compare the processing time of our algorithms in the following cases:
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Immediate successors generation: we compute the immediate successors of
the bottom concept in the two following cases:

1. 100.000 objects and attributes varying from 10 to 50, each object ran-
domly described by 20% of the attributes (see Fig. 1(a))

2. 100.000 objects and 50 attributes, each object described by random at-
tributes varying from 2 to 49 (see Fig. 1(b))

Closure generation: We compute closures in the following cases:

1. We compute the average time of a closure generation for attributes vary-
ing from 1 to 50 in the following case, with 100.000 objects and 50 at-
tributes, each object described by 10, 20, 30 then 40 random attributes.
(see Fig. 2(a))

2. We compute the closure of a singleton attribute with 100 000 objects,
50 attributes, each object described by random attributes from 2 to 49.

Trends of our results are consistent with theoretical complexities of the algo-
rithms. Deporting a part of the calculation in the SQL engine, we believe that
the index dedicated to counting object can improve performance. This results
renforces those obtained in [5] on the efficience of the key-indexation techniques
in SQL. In addition, new technologies related to cloud computing will also divide
the workload of the SQL engine on demand.

6 Conclusion

In this paper, we described two basic algorithms for browsing in a concept lattice
with limited objects access. By separating the counting from the rest of the algo-
rithm, new systems for exploring concept lattices can now rely on optimization
algorithms used in relational databases. If the tests we will realize on PostgreSQL
and MySQL databases are successfull in terms of manipulating a huge amounts
of data, we plan to propose a library for extending content management system
such as Joomlal.
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Abstract. Relational Concept Analysis [4] is an extension to FCA con-
sidering several contexts with relations between them. Often used to ex-
tend the knowledge that can be learned with FCA, RCA also meets the
issue of combinatorial explosion. The initial specification of RCA implies
a monotonic growth of the number of concepts and an exhaustiveness of
all the concepts that can be obtained when a fixed point is reached. In
this position paper we propose a different specification of RCA that per-
mits an interactive exploration of the data by letting the choice of the
user for each step. This change will permit to handle richer relational
data in a more flexible way by restraining the relations explored at each
step hence reducing the number of created concepts.

1 Introduction

Relational Concept Analysis (RCA) [4] is based on iterative use of the classical
Formal Concept Analysis algorithm to handle relational data: formal objects
are described with formal attributes, and with their relationships with formal
objects. Because RCA groups formal objects using relationships to formal objects
at any distance, it often comes with a combinatorial explosion, and patterns of
interest are difficult to extract from the huge set of built concepts. Various
strategies can be used to cope with this complexity, including separating the
initial formal object sets into smallest ones after a first analysis, or introducing
queries [1]. Here we focus on the use of RCA to interactively explore data by
letting the user choosing at each step of the iteration of FCA which contexts
(formal and relational) he or she would like to use.

The context of this research is the FRESQUEAU project* which aims at
developing new methods for studying, comparing and exploiting all the param-
eters available concerning streams and water areas. In this project, different

* This work was partly funded by french contract ANR11 MONU14.
4 http://engees-fresqueau.unistra.fr/
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approaches of knowledge discovery (including FCA) are tested and combined in
order to better assess the ecological functioning of such hydrosystems.

In this paper we first outline the RCA process to highlight potential vari-
ation points that would promote exploration. Then we conclude with a short
discussion.

2 The RCA algorithm

Algorithm 1 outlines the main steps followed by RCA to build groups of objects
by considering attributes and object-object relations [4]. The input of RCA is
a Relational Context Family RCF = (K, R) composed of n object-attribute
contexts KC; = (O;, Ai, I;), 7 in 1..n, and m object-object contexts R;, j in 1..m.

1: proc Murti-Fca( In: (K,R) a RCF,

2: Out: L array [l..n] of lattices)

3: p < 0 ; halt < false

4: for ¢ from 1 to n do

5: L°[] + BuiLp-LaTrice(K})

6: while not halt do

7: p++

8: for ¢ from 1 to n do

9: Y «+ EXTEND—REL(Kfil, L hH

10: LP[i] « UppaTe-LaTTice(K?,LP'[i])
11:  halt + A, Isomorpu1c(LP[i], LP~[i])

Algorithm 1: The RCA process

For R; C O; x Oj, we call O; the domain and O; the range. The initial-
ization step (Lines 4-5) consists in building, for all i in 1..n, the lattice L[]
associated with the context ;.

At step p:

— EXTEND-REL appends to IC; the relations obtained by scaling object-object
relations for which IC; is the domain. The scaling consists in including the
object-object relations as relational attributes. They are obtained using the
concepts of the lattices of step p — 1 and a scaling operator (i.e. 3, V). For
example, if the scaling operator 3 is chosen for scaling a given relation R;,
R; columns are replaced by attributes of the form FR; : C, where C'is a
concept in the lattice built upon objects of the range of R; at step p—1. An
object o of the domain of R; owns IR, : C if R;(0) N Extent(C) # 0.

— UPDATE—-LATTICE updates the lattices of step p — 1 in order to produce,
for ¢ in 1..n, the lattice LP[4], associated with /C; concatenated to all scaled
object-object contexts with K; domain.

The algorithm stops when a fix-point is obtained: a lattice family isomorphic to
the lattice family obtained at the previous step is obtained and leaves unchanged
concept extents.
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The advantage of such a process is that the obtained concepts have in their
intent relations to other concepts in addition to classical attributes. Those rela-
tions permit the extraction of patterns built from several interconnected concepts
as shown in [2] and [3] that could not be easily obtained with the classical process
of Formal Concept Analysis.

However, one problem of such a process is the potential difficulty to appre-
hend the result. In past work in the domain of Model Driven Engineering, data
extracted from models of medium size have been easily handled by RCA. Nev-
ertheless in a context of data mining the data are of a different scale. Especially
when only small patterns are needed while many relations connect the objects
and these relations form a cyclic entity-relationship diagram, the result will ap-
pear hard to understand by a human due to the number of concepts to consider
simultaneously and the computation time will be considered as a handicap. In
such cases, we think it will be more practical to have a kind-of exploratory
approach.

Table 1 shows main possible variations on the algorithm to go towards an
exploratory approach. We have enumerated the variation points of the algorithm
that could affect the result by changing the contexts considered at each step. We
have proposed for each variation point an alternative scenario from the process
previously described that involves the user by asking him or her to perform
selections. All those variations or only a subset of them can be applied depending
on the granularity needed.

Table 1. Variations for the exploratory approach

initialization step, L4-5 |Build lattices for selected object-attribute contexts con-
catenated to selected object-object contexts.
ExTEND-REL, L9 Rather than using all relations and scaling all object-
object relations, select a subset of the RCF and scaling
operators for each selected object-object context. Note:
lattices for ranges of the selected object-object relations
should have been calculated in a previous step (not nec-
essarily p — 1). At this step, object-attribute contexts can
also be selected and the corresponding lattice can be built.
UpDATE-LATTICE, L10 |Only the lattices for the selected relations are updated.
halt, L11 The decision is left to the expert when to stop (or the
fix-point is obtained)

3 Conclusion and discussion

In this position paper, we have outlined an exploratory approach for assisting the
use of Relational Concept Analysis in a way that would better fit a data mining
process. We have several motivations for disturbing the original RCA process:
to go faster to a relevant result by calculating less lattices (preferably lattices of
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interest), to cope with the inherent complexity of mining relational data, or to
let the expert guiding the discovery process based on his/her intuition and the
knowledge patterns that appear on-the-fly. In our current approach, the data are
given by experts, so we don’t use exploration in the sense of [5], unless the data
exploration.

Many questions are raised by this way of extracting concepts from relational
data. Initialization of the process has an impact for the later discovered struc-
tures. It can accelerate the process, if the selected object-object relations contain
the main information for the expert, or reversely, it can discard the expert from
the relevant information. Nevertheless, the most serious problem comes from
the fact that going step-by-step leads to a non-monotonic concept construction
and one could build several cases where the process diverges (iterates between
recurrent configurations). In the original RCA process, when the fix-point is
attained, lattices of the two last steps are isomorphic, thus when a concept ref-
erences another through a relational attribute, the latter can be found in the
same step appropriate lattice. But in the exploratory process we propose, when
a concept references another through a relational attribute, the latter is in a
lattice of a previous step and may itself reference a concept in a previous step,
etc. We should find solutions for presenting the expert information easy to inter-
pret these situations. Nevertheless, we think that such an exploratory approach
should be more practical than the "brute force" that iterates until the fix-point
and gives results that an expert will hardly understand.
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Abstract. The goal of this article is to study the contribution of FCA
(Formal Concepts Analysis) to (1) optimize (2) organize (3) discover new
concepts or a better operation of the semantic memory of an Artificial
Intelligence (AI) system based on a cognitive approach. The system has
been applied to game modeling (here the Reversi board game), since
games are a very good experimental field for performance evaluation.
After describing the COGITO project, which tries to assess the pros
and cons of cognitive modeling over pure operational but non explicative
paradigms in games modeling, the paper stresses out the benefits of FCA
in providing a better abstraction, and a more reliable way to handle
conflictual knowledge.

Key words: Artificial Intelligence, Cognitive Modeling, Games, Seman-
tic Memory, Formal Concepts Analysis

1 Introduction

One of the old dreams of Artificial Intelligence (AI) was to substitute humans
with Al systems, in most of the chores involving problem solving. During the
past fifty years, two methodological tracks have been extensively explored: Either
imitating human behavior, a trend that naturally leads researchers to mimic the
human cognitive structure, seen as the outcome of a natural selection [9]; Or def-
initely assessing that humans and computers are utterly different, and designing
algorithms fitted to machines, thus bypassing human skills in problem solving
[12]. If the first trend seems nowadays set aside because of its too many failures,
this paper attempts to revive some of its claims, by constraining the project to
a very simple task. This task, a REVERSI board game [7], has interesting basic
properties:

— In a cognitive approach, games require different mechanisms: Capturing an input,
trying to map it with the present memory state, learning it if new, and exploit-
ing the integrated shape through reasoning when playing a new game. Thus, the
behavior of a cognitive-based system could easily be tracked in its different steps.
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— A totally different approach, the Minimax (also called the Von Neuman theorem,
[11]), has given very good results. However, the Minimax is a way to win in a zero
sum play, not a way to learn or to understand.

— This situation enables the evaluation of the pros and cons of a cognitive approach,
versus a pragmatically performant but non explicative method, for a given task
(even if more or less biased).

Fig. 1. A note-
worthy pattern on
a Reversi Board
using the aligned
predicate

This paper describes a part of a more extensive project named COGITO
(both a research team, and an implemented software), restricted to the manage-
ment and operation of the semantic memory , and the mechanisms that acquire
(i.e. learn) or exploit (i.e. play) the knowledge required to learn to play a Reversi
game.These aspects are implemented and functional. The goal of this article is,
after describing the founding assumptions and the selected cognitive model, to
study the contribution of FCA (Formal Concept Analysis) to (1) optimize (2)
organize (3) discover new concepts or a better operation of the memory.

2 Designing a Reversi Board Game and Player

Figure 1 shows a Reversi board, with its black and white pieces. The aim of
the game is to transform the adversary’s pieces into one’s own by placing the
piece in such a way that it blocks the other’s expansion. Thus, the play relies
on noteworthy patterns that help the player develop winning strategies. There
is a very scarce literature in AT applied to Reversi. In fact, a more modern and
Japanese version, named Othello, has much more interested researchers. Rosen-
bloom [8] was the first to implement an Othello program (IAGO). Then, Lee
and Mahajan have enhanced the program performances in their BILL program
[4]. Another software, Logistello, has been developed by Buro, [1] who has fur-
ther provided asurvey of Othello evolution [2]. All implementations were based
on minimax evaluation functions. Later on, the game has been modeled with
neural networks by [3], as a tentative approach to introduce cognitive-based
models. Our attempt is the first to step from a performance-based software into
a reasoning-based one.

2.1 The Game Requirements and their Modeling

In a computational framework, the play has been modeled with predicates
that are the founding elements which compose these noteworthy patterns. The
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retained basic predicates are the following:

1. isMine(x): For the system, its own pieces

2. isOpp(z): The adversary’s pieces

3. isEmpty(z): A position on the board which can possibly be occupied by a next
move

4. isEdge(z): A noteworthy position on the edge of the board. The piece that occupies
it is harder to take.

5. isCorner(z): Also a noteworthy position.

6. near(z,y): Defines neighborhood. Might lead to a capture, if « are not of the same
color as y.

7. aligned(z,y, z): Three pieces on a same line, either vertical, horizontal, or even a
diagonal. Allows to capture the two other pieces, if z is not of the same color as x
and y.

To implement the game, one needs to:

— Acquire the board ’state’; also called the board configuration. It requires the
coordinates of all pieces, and which predicates each piece instantiates.

— Map the present board to a set of stored noteworthy patterns that express playing
strategies.

— Choose the best and thus perform a move.

— Learn moves from the other player in order to enhance the system abilities.

| [ ReasonG ewcine |
Primary
memory

Decision
making

mZ-0Zm w-0<r>Z>

Fig. 2. The General Schema of the Im-
plemented Cognitive Structure

2.2 The Implemented Cognitive Structure: Memory and Reasoning

The theoretical computational model underlying the design of such a requirement
set is provided in figure 2. The board is described as a matrix, and is transmit-
ted, from the environment to the Rulebook module, through an I/O module.
The latter determines all the possible moves, and generates the set of all result-
ing matrices, to be transmitted to the Basic Conceptual Analyzer. This package
transforms the matrices into a logical set of first order formulas, using the ba-
sic predicates defined above. The outcome is a set of facts in a logical format,
transmitted to the Advanced Conceptual Analyzer. The latter maps the possi-
ble patterns of the board with the already stored noteworthy patterns. Then, it
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launches the reasoning module which chooses between the possible moves, ac-
cording to the set of board configurations and recognized noteworthy patterns.
This choice is based on an evaluation associated with the pattern, representing
the number of times it has figured in a winning game (in the form of a 'probability
of winning’ with the appropriate formula). This cognitive structure schema has
been largely inspired from the ’artificial consciousness model” in [10]. The latter
involves a much larger set of elements and relationships. The COGITO project
work has mostly focused on the memory and reasoning parts of the model. As
seen here, the primary memory is a temporary buffer that stores the results of
perceived inputs (short term memory). The memory module contains two other
parts: An episodic memory, storing games and moves as they have been played
during different sessions, and the semantic memory, keystone of this contribu-
tion. Both have exactly the same structure, and the episodic memory content is
appended’ to the semantic memory.

3 The Semantic Memory Structure

3.1 Memory as a Graph Structure

Fig. 3. The Semantic
Memory Matrix

The semantic memory stores:
(1) Objects, that represent board configurations met during different games. These ob-
jects are implemented as classes named Complete Board States or CBS.
(2) Attributes, for those noteworthy patterns added, all along, by the reasoning module
introspective part, and named Relevant Partial Board States or RPBS.
(3) Relationships between boards and patterns, i.e. between CBS and RPBS.
Figure 3 is a representation of the semantic memory content. As such, this has
naturally led us to consider two possible approaches for shaping and formalizing
the semantic memory:
(1)A bi-part graph, where objects and attributes are nodes, and their edges standing
for their mutual relationships, such as in figure 4. The prefix 'master’ seen in this
graph allows typing any graph (from the episodic memory), appended to the stored
parts of the long term semantic memory (Figure 5 shows how the semantic memory is
upgraded with parts coming out of the episodic memory). The root node suggests here
an artificial referential element, neutral to the relationship ’edge’.
(2) A conceptual model obtained after applying FCA.
The graph representation has been implemented here with a graph oriented
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DBMS (an open source system called Neo4j), and exploited. It works quite well
in most of the cases.

However, observation has shown the following liabilities, that were trans-
formed into requirements for an FCA modeling:

— The abstraction level is quite low, and still too close to the operational requirements
of the game.

— When reasoning on patterns as pure attributes, any composition of patterns in-
herits the valuation of its members. For instance, if two ’winning’ RPBS, when
associated, could generate a conflict, the present approach would not detect it.

— It is possible that the information appended from the episodic memory and some
already existing parts of the semantic memory, turn out to be redundant. The
present model does not prevent such a situation, neither does it cure it.

3.2 The Contribution of FCA to the Semantic Memory
Organization

FCA (Formal Concepts Analysis) [6] helps organizing and structuring informa-
tion presented as a collection of objects and their properties. Figure 3 shows that
the semantic memory content is a very good candidate for such a design. Thus,
it has been performed on the CBS/RPBS matrices presented in Figure 3, using
Concept Explorer (Conexp, [13]) an open source concept lattice builder. A recent
work on a neighboring application, related to semantic neural decoding [5] has
encouraged such an attempt. Human cognitive structures are neural, and an im-
itative model, such as our Cognitive Semantic Memory, would probably benefit
from the same achievements. The discussed improvements are those described
in the following subsections.

Reducing Redundancy, Optimizing Decision Making, Evaluating Pat-
terns Quality and Discovering New Patterns In Figure 6, three concepts
introduce more than five noteworthy patterns (RPBS). This helps to reduce re-
dundancy, as mentioned previously, by merging these patterns into one, without
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any loss of information on the whole set of acquired data. Let us note that FCA
concepts are sets of CBS sharing the same properties. This means that games
could be put into categories, and a classification of winning games and their
hierarchy, can be extracted from this work (see next subsection).

Fig. 6. An overview of the Concepts Lat-
tice: Boards are Objects, and Patterns,
Attributes

Also, a hierarchy among the RPBS seems to appear. This might lead to a
more intelligent search on the matching RPBS (in the reasoning module of Figure
2) by reducing the number of homomorphisms applied to each board. Thus, the
decision making might take less time, without reducing the number of RPBS in
the search space.

RPES7698329267329378303G

RPBS—7030868264787493454C

RPBS6176005682082658220

RPBS78869395914T31106G ¥]_—

\ i
Fig. 7. noteworthy Patterns emerging as X /W,)
Common Parts of Concepts, i.e. Game

Boards

The RPBS introduced in the parent concepts of a common concept (intro-

ducing at least one CBS) have potentially a common subpart, that could be
extracted as a new (and efficient) RPBS (see Figure 7).
Also, RPBS have been weighted, in the COGITO system, according to their
presence frequency in winning, respectively losing games. We have tried to build
lattices based on this feature. Figure 8 shows the organization of the winning
games. Such a piece of information is crucial since it might help modifying the
RPBS weights.

Discovering New Rules and Strategies Moreover, and unexpectedly, Con-
exp has helped us find rules featured as follows, that might be caused by inclu-
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sions of RPBS:

r<n> RPBSZd(’LU) =><<m > RPBSZ',ﬂ,RPBSidz, ...RPBS;a (1)
where:

1. r is the rank of the rule. The better the rank, the more reliable the rule.

2. < m > represents the number of times the RPBS identifier (RPBS;4) in the hy-
pothesis appears in a CBS.

3. m is the number of times the conclusion is found.

4. w represents the confidence associated to the rule. if w is equal to 100, it means that
each time the RPBS;4 is found, there is a 100 percent chance that it is followed
by the RPBS;q1, RPBS;42,... RPBS,q; of the conclusion. w is the representation
of n/m. The following extract shows a few among those that have been found by
the system.

This means that beyond the relationships between concepts (CBS) and at-
tributes (RPBS), FCA helps discovering possible dependancies amongst attributes
themselves, leading to a re-design of the noteworthy pattern notion.

Samples of Derived Rules

1 < 7> RPBS2451946951846987668P [100 \%]
==> < 7 > RPBS-4298734809266812793P  RPBS5155796358318376653P
RPBS-332696813166452205P RPBS-7263297845748811357P

RPBS2695868336796769590P RPBS844283409270944352P;
[..]

58 < 20 > RPBS6368401393598113686G [95 \%]=>

< 19 > RPBS617699568208265822G;

[..1

Fig. 8. A Lattice of the Winning
Games and the Patterns they used

4 Conclusion
The experiment has shown that FCA can provide very interesting modifications

to the initial memory structure. For the moment this step has not been auto-
mated, because we wanted to evaluate FCA added value: indeed, it has improved
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the quality and reliability of the acquired knowledge. However, FCA must not be
run on a learning system, since it would bias the learning step (when the system
acquires new RPBS and CBS from games played against a human player). The
general idea is to re-design the memory with FCA, and this time, automatically,
but only after a reasonable number of games where the memory has more or less
acquired elements, and to rerun FCA only until another quite large number of
games have been played. During the game step, it would be valuable to store the
ongoing CBS in a concept. Concepts can be ’weighted’ with values expressing
their reliability. Thus the ongoing CBS can inherit its parent concept present
weight and, benefiting from the lattice structure, drastically reduce the num-
ber of possible RPBS (in the reasoning module). Also, it would be interesting
to constantly check stabilization in learning, in order to build a sort of a final
lattice, which will represent a stable and 'mature’ state of the semantic memory.
We also anticipate that the final number of concepts will also stabilize. A future
experiment will be performed to determine the final lattice size.
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1 Introduction

Web search engines usually give poor results when searching in multimedia
databases since they use the contextual web page, or the meta information at-
tached to the multimedia objects. The semantic meaning that the user usually
attaches to the content of the document is often very different from the text used
for indexing the image (semantic gap). Content Based Image Retrieval (CBIR)
has been proposed to search into huge unstructured image databases by giving
an example of what the user is looking for instead of describing the concept it
represents. Classically, visual features are extracted from the images and then
compiled into a signature [1]. To perform the retrieval, a similarity function is
computed to compare the index of the query to those of the collection. A ranking
of the results is produced according to the similarity and shown to the users. To
improve the quality of the retrieval, an interaction with the user, called relevance
feedback [2], can be added. These techniques work pretty well in the context of
searching visually similar images in unstructured image databases.
In this article, we are interested in CBIR in the context of comicbook databases.

In this case, databases cannot be considered as unstructured anymore since im-
ages can be grouped in terms of panels, pages and volumes which are themselves
associated with metadata concerning the author or the series they belong to.
We would like to benefit both from the search facilities given by CBIR tech-
niques with feedback and semantic information embedded in the structure of the
comichooks documents. To do such a thing, Logical Concept Analysis (LCA),
an extension of Formal Concept Analysis (FCA) [3], is used through the Sewelis
implementation [4]. We will first go through the presentation of our comicbook
model and its transcription into LCA. Then we will explain how we can mix
classical CBIR and LCA techniques together to enhance retrieval relevance.
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2 Semantic Content Based Image Retrieval

2.1 Model description

Comicbooks have a natural hierarchical structure that can be formalized. They
are made of pages which contain panels. These panels can eventually be gath-
ered in strips' and contain different kind of objects, such as speech balloons,
characters, free text, etc. Balloons can be of many kinds (dialogue, thoughts
etc.).This knowledge can be used to deduce more information such as pieces of
the storyline. Fig. 1 illustrates the model we propose to formalize the comicbooks
domain. It has been described with more details in [5].

- T
- hasDrawer

juas Part

»
is_a " hasReference " hasValidation _ - “hasPart . haslmage
S
RegionOflnterest

- hasX - hasWidth
- hasY - hasHeight
fs.a - hasExtractor

Fig. 1. Part of our model concepts hierarchy and their properties.

2.2 Heterogeneous and complex data integration

Some works [6-8] already enhanced the classical CBIR techniques with an ontol-
ogy approach. The modelling was mainly focused on the description of segmented
areas though. We would like to go further and use the full power of description
provided by description logics.Indeed, the model presented previously is expres-
sive enough to allow the retrieval of similar panels considering different charac-
teristics like low-level image features, spatial relations or semantic information.

An input picture, picked from the database, being given, the system will not
only be able to retrieve similar pictures based on the classical image charac-
teristics (colors, shapes, textures...), but also based on the associated semantic
and the knowledge that could have been learnt previously. Considering that the
query is a Panel instance, the search can focus on:

(1) The panel’s characteristics (i.e. data properties of a Panel object). This
could be its rank, its shape, its size, its position, its shot type, its view angle,

1 A strip is defined as an horizontal sequence of panels. Traditionally, a strip is made
of 1 to 6 panels and a page can contain up to 4 stacked strips.
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etc. Images of a very close shot of a character’s face or a landscape picture of a
valley being at the top of a page can be examples of queries.

(2) The panel’s relations (i.e. object properties). Properties of objects related
to the query panel can be used as well as its own characteristics. Therefore, there
are two directions to look at from a panel point of view.

— The search can focus on what is inside the panel, like similar amount of
objects in a scene (a dialogue between two characters for instance) or related
text content. The retrieval process can also rely on objects contained in the
panel, whether they are identified or not. Assume that the query picture
contains an identified character A whose visual signature is defined by the
set of features X. The system will not only look for panels containing an
instance of A, but also for those showing a spatial region matching X.

— Outside: the search can focus on panels sharing page’s or comic’s character-
istics (such as author, style, etc.)

These kinds of retrieval angles are not mutually exclusive and it is very
possible to combine two or more of them in order to narrow the result set. The
search possibilities are only limited by the completeness of the description.

2.3 Sewelis integration

In databases, information retrieval is classically performed by request queries
expressed in a specific request language, as SQL for example. However, the more
refined is the search, the more sophisticated is the request. Some information
retrieval systems offer a simpler search refinement by navigation in a predefined
static data structure, where each navigation step proposes to the user a more
refined query answer. For example, file systems can be considered as an infor-
mation retrieval system where data is organized in a static tree structure. A new
approach of information retrieval, both by request and by navigation in a Galois
lattice structure [9], has been proposed in [10, 11].

The concept lattice is a rich and flexible navigation structure automatically
derived from data, and can therefore be considered as a dynamic and complete
space search enabling data description while preserving its diversity. Querying
and navigation can be freely combined: to each user request corresponds a con-
cept of the lattice as answer ; the user can then improve its search either by
amending its request, or by on-line browsing around the concept in the lattice
structure. Such an approach was already proposed, for example in [10] with the
logical information systems (LIS) and has been implemented in Sewelis [4].

Sewelis is used to load the comics’ ontology and to create a bound between
the model and a concept lattice. The objects of the lattice match the classes of
the model, the attributes are their properties and each concept stands for a set
of classes’ instances sharing the same properties. It is then possible to navigate
all the way to any concept, using the flexible navigation structure provided by
the concept lattice.

2.4 Application

Let us illustrate this with a simple example. Let say we have a query panel and
we want to retrieve the strip it is coming from. While it only takes a quick look
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to a human being to find the answer, it is not something obvious for a machine,
the strip concept not even being part of the model. Classical CBIR methods,
based on a similar visual features criterion, are helpless in that case. However,
if the knowledge related to the panels and their inside/outside relatives is used,
it becomes possible to return results that can be justified by the system and
iteratively refined with the relevance feedback brought by the user. Concerning
this request, the page number of the panel will first be considered (outside panel’s
relation) in order to focus on panels coming from the same page. Then, the y-axis
value of its centroid will be selected and only panel’s whose centroid corresponds
to the same y-value, within a predefined delta, will be kept. Finally, the hasNext
[5] relation can be used to sort output panels in order to rebuild the strip.

3 Conclusion and perspectives

This paper has presented an ongoing work about a Semantic Content Based
Image Retrieval system applied to comic books. The final aim would be to pro-
vide a complete system that would be able to (1) retrieve resources similar to a
query, based on the amount of mutual properties they share and the significance
of these properties guided by the user relevance feedback, and (2) explain to the
user why a returned resource is considered to be relevant to the query.
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1 Introduction

The symbolic methods of machine learning work on objects with symbolic, Boo-
lean, integer, and categorical attributes. From this point of view, these methods can be
considered as the methods of mining conceptual knowledge or the methods of con-
ceptual learning. Currently the theory of symbolic machine learning is not recognized
as a model of classification reasoning, although precisely this reasoning constitutes an
integral part of any mode of reasoning (1, 2). The sole exception to this is the DSM
method of hypothesis generation developed by V.K. Finn (3) and based on simulating
inductive reasoning rules revealed in human thinking by D. S. Mill (1). There is also a
tradition to consider induction separately from deduction. Classification task of min-
ing hypotheses distinguishing and describing classes of a given object classification
is conventionally solved separately from hypothesis’s application except the deduc-
tive-inductive integrated model developed by Zakrevskij (4) and based on representa-
tion of data and knowledge in Boolean space of attributes.

However the role of classification in human reasoning is enormous. Classification,
as a process of thinking, performs the following global operations: 1) forming knowl-
edge and data contexts adequate to a current situation of reasoning; 2) reducing the
domain of the search for a solution of some problem; 3) generalizing or specifying
object descriptions; 4) interpreting logical expressions on a set of all thinkable ob-
jects; 5) revealing essential elements of reasoning (objects, attributes, values of attrib-
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utes etc); 6) revealing the links of object sets and their descriptions with external
contexts interrelated with them. This list can be continued.

Reasoning requires a lot of techniques related to increasing its efficiency such as
valuation, anticipation, making hypotheses, generalization and specification. One of
the important techniques is decomposition of the main problem into sub-problems. It
implies using the following operations: choosing sub-problems, ordering sub-
problems (ordering arguments, attributes, objects, variables, etc.), optimizing sub-
problem selection, and some others. The most familiar examples of sub-problem or-
dering are so called tree-like scanning and level-wise scanning methods. Some inter-
esting variations of selecting sub-problems are the choice of a more flexible sub-
problem, for example, one with minimal difference from a previous sub-problem and
a sub-problem with minimal possible number of new solutions. Intermediate results of
reasoning are used for decreasing or locally bounding the number of sub-problems.

We limit our consideration of classification reasoning to a special class of logical
reasoning based on mining and using conceptual knowledge the elements of which
are objects, attributes (values of attributes), classifications (partitions of objects into
disjoint blocks), and links between them. If we take into account that implications
express relations between concepts (the object <> the class, the object <> the property,
the property <> the class), we can assume that schemes of mining and applying impli-
cations form the core of classification processes, which, in turn, form the basis of
human commonsense reasoning.

Our approach is based on the concept of a good diagnostic test (GDT) for a given
classification of objects (5). A good classification test has a dual nature: on the one
hand, it is a logical expression in the form of implication or functional dependency,
on the other hand, it generates the partition of a training set of objects equivalent to
the given classification of this set or the partition that is nearest to the given classifica-
tion with respect to the inclusion relation between partitions. Inferring good test al-
lows in principle mining from data not only structures of formal concepts but also
structures of classification ordered by the inclusion relation.

Mathematical structure for GDTs’ construction is Galois’s lattice. The formal
model of classification as an algebraic lattice has been obtained in two independent
ways. One way goes back to the work of great psychologist J. Piaget who introduced
the concept of grouping (2) to explain methods of object classification developed by
7-11 years children. In this book, a conception of classification is given based on
mutually coordinated operations on objects, classes of objects, and properties of ob-
jects.

The coordinated classification operations generate logical implicative assertions.
The classification operations are connected with understanding the operations of
quantification: “not all ¢ are a”, “all b are ¢”, “no b are ¢”, “some ¢ are b”, “some b
are not a” and so on. The violation of the coordinated classification operations implies
the violation of reasoning. Piaget J. shows that a key problem of personal understand-
ing operational classification is the problem of understanding the inclusion relation.
He adds that the lattice structure is the source of classification operations (2, pp. 195,
387-389).
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The idea that classification is a lattice arose also from practical tasks of pattern
recognition. In 1974, J. Shreider has described the classification algebra (6) as idem-
potent semigroup with the unit element. In 1974, N. Boldyrev advanced (7) the for-
malization of pattern recognition system as algebra with two binary operations of
refinement and generalization defined by an axiom system including lattice axioms.

The paper is organized as follows: basic definitions are given in Section 2, Section
3 describes briefly a model of lattice construction as inductive-deductive common-
sense or classification reasoning; some words of conclusion terminate this article.

2 Basic Definitions

IMPLICATIVE ASSERTIONS (logical rules of the first kind) describe regular re-
lationships connecting together objects, properties and classes of objects. We consider
the following forms of assertions: implication (a, b, ¢ — d), forbidden rule (a, b, ¢ —
false (never), diagnostic rule (x, d —> a; x, b —> not a; d, b — false), rule of alterna-
tives (a or b — true (always); a, b — false), compatibility (a, b, c & VA, where VA is
the occurrence’s frequency of the rule).

In our consideration, COMMONSENSE REASONING RULES (CRRs) are rules
with the help of which implicative assertions are used, updated and inferred from
instances. The deductive CRRs infer consequences from observed facts with the use
of implicative assertions. An analysis of human commonsense reasoning shows that
these rules are the following ones: modus ponens: “if 4, then B”; 4; hence B; modus
ponendo tollens: “either 4 or B” (4, B — alternatives); 4; hence not B; modus tollendo
ponens: “either 4 or B” (A, B — alternatives); not 4; hence B; modus tollens: “if 4,
then B”; not B; hence not 4; generating hypothesis: “if 4, then B”; B; A is possible.

The inductive CRRs are the canons formulated by John Stuart Mill (1): Method of
Agreement, Method of Difference, Joint Method of Agreement and Difference,
Method of Concomitant Changes, and Method of Residuum. These methods are not
rules but they are the processes in which implicative assertions are generated and used
immediately. Therefore inductive inferences are not separated from deductive ones.

Let G= {1, 2,..., N} be the set of objects’ indices (objects, for short) and M = {m,,
my, ..., mj, ..My} be the set of attributes’ values (values, for short). Each object is
described by a set of values from M. The object descriptions are represented by rows
of a table the columns of which are associated with the attributes taking their values in
M (see, please, Table 1).

The definition of good tests is based on correspondences of Galois on I = GxM (8)
and two relations G > M, M — G. Let A < G, B< M. Denoteby By, Bic M,i=1,...,
N the description of object with index i. We define the relations G - M, M — G as
follows: G — M: A" = val(4) = {intersection of all B;: Bjc M, i € A} and M — G: B’
=o0bj(B) = {i: i € G, B < B;}. Of course, we have obj(B) = {intersection of all obj(m):
obj(m) < G, m € B}.

Operations val(4), obj(B) are reasoning operations (derivation operators) related to
discovering general features of objects and all objects possessing a given set of fea-
tures.
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We introduce two generalization operations: generalization of(B) = B" =
val(obj(B)); generalization_of(4) =A" = obj(val(4)). These operations are actually
closure operators (8). A set 4 is closed if 4 = obj(val(4)). A set B is closed if B =
val(obj(B)). For g € Gand m € M, {g}' is denoted by g’ and called object intent, and
{m}' is denoted by m' and called value extent.

The generalization (specification) operations are usual mental acts. Suppose that
somebody has seen two films with the participation of Gerard Depardieu. After that
he tries to know all the films with his participation. Suppose that one can know that
Gerard Depardieu acts with Pierre Richard in several films. After that he can discover
that these films are the films of the same producer Francis Veber.

For representing a classification, we use factually the way proposed by S.O.
Kuznetsov in (9) for the case when the set M is the set of attribute’s values. Let a
context K = (G, M, I) be given. In addition to values of M, a target value ® ¢ M of an
attribute is considered. The set G of all objects is partitioned into two subsets: the set
G- of objects having property o (positive objects), the set G- of objects not having
property ® (negative objects). We have K = K, U K_, where K, = (G, M, L.), K_=
(G-, M, ), G= G+ U G- (G-= G\ G.). Diagnostic test is defined as follows.

Definition 1. A diagnostic test for G- is a pair (4, B) such that B < M (4 = obj(B)
#0), A < G, and B & val(g) & B # val(g), Vg, g € G-. Equivalently, obj(B) N G- =
.

In general case, a set B is not closed for diagnostic test (4, B), i. e., a diagnostic test
is not obligatory a concept of FCA. This condition is true only for the special class of
tests called ‘maximally redundant ones’.

Definition 2. A diagnostic test (4, B), B < M (4 = obj(B) # &) for G- is maxi-
mally redundant (GMRT) if obj(B U m) c A, forallm ¢ Band m € M.

Definition 3. A diagnostic test (4, B), B < M (4 = obj(B) # &) for G- is irredun-
dant if any narrowing B* = B\m, m € B implies that (obj(B*), B*)) is not a test for
G..

Definition 4. A diagnostic test (4, B), B < M (4 = obj(B) # &) for G, is good if
and only if any extension 4* =4 Ui, i ¢ A, i € G, implies that (4*, val(4*)) is not a
test for G,.

If a good test (4, B), B < M (4 = obj(B) # &) for G. is irredundant, then any nar-
rowing B* = B\m, m € B implies that (obj(B*), B*)) is not a test for G.. If a good test
(4, B), B< M (4 = obj(B) # Q) for G, is maximally redundant, then any extension B*
=B um,m ¢ B, m € M implies that (obj(B* U m), B*) is not a good test for G..

Definition 5. Let ¢ be a set of values such that (obj(¢), ?) is a test for a given set of
objects. We say that the value m € M, m € t is essential in 7 if (obj(¢\m), (fsm)) is not a
test for a given set of object.

Definition 6. Let s be a subset of objects belonging to a given positive class of ob-
jects; assume also that (s, val(s)) is not a test. The object #, j € s is said to be an essen-
tial in s if (sV, val(s\/)) proves to be a test for a given set of positive objects.

To illustrate using essential values and generalization operations in the process of
good tests’ generation, we consider a partition of objects in Table 1 into positive and
negative ones. Let G(+) be equal to {4,5,6,7,8} and splus(m) = obj(m) N G(+), m € T.
The value ‘Red’ corresponds to a test for positive objects because obj(Red) =
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splus(Red) — G(+). Delete ‘Red’ from consideration. The value ‘Tall’ is essential one
in object 7 and does not correspond to a test: obj(7all) = {3,4,5,7,8} # splus(Tall).
The projection of the value ‘Tall’ on the set of positive objects is in Table 2. Here
splus(Bleu) = {5,7,8}, val(splus(Bleu)) = ‘Tall Bleu’, obj(Tall Bleu) = splus(Tall
Bleu), hence ‘Tall Bleu’ corresponds to a test for Class 2. We have also that ‘Tall
Brown’ corresponds to a test but not a good one. We delete ‘Bleu’ and ‘Brown’ from
the projection as shown in Table 3.

Table 1. Example of a data classification

Index ofexample | Height | Color of hair | Color of eyes [ Class
1 Low Blond Bleu 1
2 Low Brown Bleu 1
3 Tall Brown Hazel 1
4 Tall Blond Hazel 2
5 Tall Brown Bleu 2
6 Low Blond Hazel 2
7 Tall Red Bleu 2
8 Tall Blond Bleu 2

Table 2. The projection of the value ‘Tall’ on objects of G(+
Index of example | Height | Color of hair | Color of eyes | Class

4 Tall Blond Hazel 2
5 Tall Brown Bleu 2
7 Tall Bleu 2
8 Tall Blond Bleu 2

Table 3. The reduction of the projection of the value ‘Tall’ on objects of G(+)
Index of example | Height | Color of hair | Color of eyes | Class

4 Tall Blond Hazel 2
5 Tall 2
7 Tall 2
8 Tall Blond 2

Now rows 5 and 7 do not correspond to tests for Class 2 and they can be deleted.
The intersection of the remaining rows of the projection is ‘7all Blond’. We have that
obj(7Tall Blond) = {4,8} c G(+) and (obj(Tall Blond), Tall Blond) is a test for Class 2.
As we have found all the tests for Class 2 containing ‘Tall’ we delete ‘Tall’ from the
objects of this class. Return to Table 1. We can delete rows 5, 7, and 8 because they
do not correspond to tests for Class 2: value Tall is essential one in these rows. The
intersection of the remaining objects of Class 2 gives a test (obj(Blond Hazel), Blond
Hazel) because obj(Blond Hazel) = splus(Blond Hazel) = {4,6} < S(+).

3 Inferring good classification tests as commonsense reasoning
We shall consider two interconnected lattices OBJ = (2%, U, N) = (2 <) and VAL

=M U, n)=(2Y, <), where 2, 2™ designate the set of all subsets of objects and the
set of all subsets of values, respectively; s € 29, ¢ € 2. Inferring the chains of lattice
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elements ordered by the inclusion relation lies in the foundation of generating all di-
agnostic tests: (1) 5o C ... C 8 S Sis1 S ... C Sm (Val(sg) 2 val(s;) 2 ... 2 val(s) 2
val(si)) 2 ... 2 val(sm) ; Q) hC ... C St S ... S t (Obj(f)) D 0bj(t1) 2 ... 2
obj(#) 2 obj(ti+1) 2 ... 2 obj(fn)). The dual ascending and descending processes of
lattice generation are determined as follows: 3) (oo t, 2 ... D tiDtitl D ... Dty
(obj(ty) < obj(#)) < ... < obj(f) < obj(fi+tl) < ... c obj(tw) ; D) o252 ... D52
Sit1 2 ... 2 8m (val(so) < val(s)) <... < val(s; ) < val(siy) < ... < val(sm)).

The following inductive transitions from one element of a chain to its nearest ele-
ment in the lattice are used: (i) from sq to s5q:1, (ii) from £, to 41y, (iii) from s4 to s5q.1,
(iv) from ¢, to t,.;, where g, g+1, g-1 are the cardinalities of enumerated subsets of
objects and values: sq, Sq:1, and sq.1, € G tg, tq1, and £, < M.

The transitions can be smooth and boundary. Under smooth transition, generating
sets of values (objects) is performed with preserving a given property of them. These
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properties are, for example, “to be a test for a given class of objects”, “to be an irre-
dundant set of values”, “not to be a test for a given class of objects”, and some others.
A transition is said to be boundary if it changes a given property of sets of values
(objects) into the opposite one.

For realizing the smooth inductive transitions, the following inductive reasoning
rules are used: generalization rule, specification rule, and dual generalization and
specification rules.

The generalization rule is used to get all the sets of objects sq11 = {i1, i, ... ig, igt1}
from a set sq = {i}, ib, ... iq} such that (sq, val(sq)) and (sq+1, val(sq+1)) are tests for a
given class of objects. The termination condition of generalization chain is: for all the
extension sq:1 0f Sq, (Sq+1, val(sq+1)) is not a test for a given class of objects.

The specification rule is used to get all the sets of values tq1 = {my, my, ..., Mmqs1}
from a set ¢, = {my, m,, ..., mq} such that ¢, and ¢, are irredundant sets of values and
(obj(#y), t5) and (obj(4+1), fq+1) are not tests for a given class of objects. The termina-
tion condition for specification chain is: for all the extensions #q4; of ¢, #4+ is either a
redundant set of values or a test for a given class of objects.

The dual generalization and specification rules relate to narrowing the collection of
values and objects, respectively.

These rules realize the Joint Method of Agreement and Difference.

All inductive transitions take their interpretations in human mental acts. The ex-
tending of a set of objects with checking the satisfaction of a given condition is a
typical method of inductive reasoning. In pattern recognition, the process of inferring
hypotheses about the unknown values of some attributes is reduced to the maximal
expansion of a collection of the known values of some attributes in such a way that
none of the forbidden pairs of values would belong to this expansion. The contraction
of a collection of values is used, for instance, in order to delete from it redundant or
non-informative values. The contraction of a collection of objects is used, for in-
stance, in order to isolate a certain cluster in a class of objects. Thus, we distinguish
lemons in the citrus fruits.

The smooth transitions require the use of searching for admissible values (objects)
for extending or narrowing the set of values (objects). Consider some methods for
choosing objects admissible for extending s. Let S(test) be the partially ordered set of
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elements s = {i|, i, ... ig}, ¢ =1, 2, ..., nt - 1 obtained as a result of generalizations
and satisfying the following condition: (s, val(s)) is a test for a given class of positive
objects, nt is the number of positive objects. Let STGOOD be the partially ordered set
of elements s satisfying the condition: (s, val(s)) is a GMRT for a given class of posi-
tive objects.

Method 1. Suppose that S(test) and STGOOD are not empty and s € S(test). Con-
struct the set V'={U s’, s € 5°, 5" € {S(test) U STGOOD}}. The set V' is the union of
all elements in S(test) and STGOOD containing s, hence, s is in the intersection of
these elements. If we want an extension of s not to be included in any element of
{S(test) U STGOOD}, we must use, for extending s, the objects not appearing simul-
taneously with s in V. The set of objects, candidates for extending s, is equal to
CAND(s) = nts\V, where nts = {U s, s € S(test)}.

An object j* € CAND(s) is not admissible for extending s if at least for one object
i € s the pair {i, j*} either does not correspond to a test or it corresponds to a good
test (it belongs to STGOOD). Let Q be the set of forbidden pairs of objects for extend-
ing s: Q= {{i,j} < S(): ({i, j}, val({i, j}) is not a test for a given class of positive
objects }. Then the set of admissible objects is select(s) = {i, i € CAND(s): (V)) (j €
s), {i,j} ¢ {STGOOD or Q}}. The set O can be generated in the beginning of search-
ing for all GMRTs for a given class of positive objects.

Method 2. In this method, the set CAND(s) is determined as follows. Let s* = {s
U j} be an extension of s, where j ¢ s. Then val(s*) < val(s). Hence the intersection
of val(s) and val(j) must be not empty. The set CAND(s) = {j: j € nts\s, val(j) M val(s)
# 0},

The knowledge acquired during the process of generalization (the sets O, CAND(s),
S(test), STGOOD) is used for pruning the search in the domain space.

The boundary inductive transitions are used to get: (1) all the sets #, from a set 7y
such that (obj(Z,.1), #4-1) is not a test but (obj(t,), £,) is a test, for a given set of objects;
(2) all the sets #,.; from a set #, such that (obj(zy), ¢;) is a test, but (obj(¢g.1), f5-1) is not a
test for a given set of objects; (3) all the sets sq.; from a set 54 such that (sq, val(s,)) is
not a test, but (sq.1, val(sq.1)) is a test for a given set of objects; (4) all the sets of sq
from a set sq.; such that (sq.1, val(sq.1)) is a test, but (sq,val(sq)) is not a test for a given
set of objects. The boundary inductive transitions realize the Method of Difference or
Method of Concomitant Changes. For their implementation, we use the inductive
diagnostic rule (IDR) and dual inductive diagnostic rule (DIDR). These rules require
searching for essential values (IDRs) and essential objects (DIDRs).

All the boundary transitions are also interpreted as human reasoning operations.
Transition 1 is used for distinguishing two diseases with similar symptoms. Transition
2 can be interpreted as including a certain class of objects into a more general one.
For instance, squares can be named parallelograms, all whose sides are equal. In some
intellectual psychological texts, a task is given to remove the “superfluous” (inappro-
priate) object from a certain group of objects (rose, butterfly, phlox, and dahlia) (tran-
sition 3). Transition 4 can be interpreted as the search for a refuting example.

Inductive reasoning rules generate implicative assertions or logical rules of the first
kind, as shown in Table 4.
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Table 4. Rules of the first kind obtained with the use of inductive reasoning rules

Inductive rules Action Inferring rules of the first kind

Generalization rule Extending s (narrowing t) | Implications

Specification rule Extending t (narrowing s) | Implications

Inductive diagnostic rule Searching for essential Diagnostic rules, forbidden rules
values

Dual inductive diagnostic rule | Searching for essential Compatibility rules (approximate
objects implications)

During the lattice construction, the implicative assertions based on tests, are gener-
ated and used immediately. The knowledge acquired during the process of generaliza-
tion (specialization) is used for pruning the search space (current context) with the use
of deductive reasoning rules.

4 Conclusion

This work is an attempt to consider a large class of machine-learning tasks as a
model of commonsense reasoning process based on using well-known deduction and
induction logical rules. For this goal, we have chosen the task of inferring good classi-
fication tests for a given partitioning on a given set of objects because a lot of well-
known machine-learning problems such as inferring functional, implicative, and asso-
ciative dependencies from a dataset are reduced to this task.
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Abstract. Classification of possible errors in formal contexts is given
and the possibilities of exploring them are discussed. An approach for
finding errors of some classes in formal contexts is introduced. This ap-
proach may be used in attempt to find errors in an object that is to be
added to the context. The idea is based on finding those implications
from an implication basis of the context, which are not respected by the
object. It is noted that addressing such a problem directly may lead to
an intractable solution. Alternative approach based on closing subsets of
the intent of an object is considered in order to be able to find solution
in polynomial time and deal with inconsistent combination of attributes.
Examples are provided.

Keywords: formal context, implication, error exploration

1 Introduction

The work is motivated by the idea of building multi-user system based on Formal
Concept Analysis methods. It would be different from QED project [QED] in
the way that information should not be formalised as mathematical expressions
and from Wikipedia in the way that information can somehow be inferenced by
computer. In such a multi-user system error finding tools are absolutely nec-
essary. In this work only errors in new objects (not yet added to the context)
are considered. Throughout the text we assume that objects in the context are
checked by an expert and correct. We attempt to find errors in new objects
based on the information already in the context. This is actually the first step
to building error finding tools.

2 Main Definitions

Let G and M be given sets. Let I C G x M be a binary relation between G and
M. Triple K := (G, M, I) is called a (formal) context.
Set G is called a set of objects. Set M is called a set of attributes.

* We thank Sergei Obiedkov for discussion and useful remarks
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Consider mappings ¢: 2¢ — 2M and 1: 2M — 2¢: p(A) == {m € M |
gIm forall g € A}, ¥(B) :={g € G| gIm for all m € B}. For any Ay, Ay C
G, By, B> C M one has

1. A; C As = p(Az) C p(Ar)
2. B1 C By = ¢(B2) C ¢(Bh)
3. A1 g w@(Al) and Bl Q (pw(Bl)

Mappings ¢ and 9 define a Galois connection between (2¢,C) and (2M,C), i.e.
¢(A) € B & ¢(B) C A. Usually, instead of ¢ and ¢ a single notation (-) is
used. (-)" is sometimes called a derivation operator. For object g € G the set
g = {m € M|gIm} is called an intent of g and is denoted int(g). Similarly, for
attribute m € M the set m/ is called an extent of m and is denoted ext(m).
Let M = {m | mée M}and I = {(g9,m) | g € G,m € M,(g,m) ¢ I}. Triple
K := (G, M,]) is called a complementary (formal) context.

Let BC M,g € G,B:={b| b€ B}. B C int(g) means that in K = (G, M, I)
object g is not related to all attributes from B.

An implication of K := (G, M, I) is defined as a pair (A, B), written A — B,
where A, B C M. A is called a premise, B is called a conclusion. Implication
A — B is respected by a set of attributes N if A ¢ N or B C N. Implication
A — B holds (is valid) in Kif A’ C (BUA)" or A’ C B’, i.e. every object, that
has all the attributes from A, also has all the attributes from B. The implications
of K satisfy Armstrong rules:

X =Y X—->YYUZ->W
X—-X ' XuzZ-Y '’ Xuz-—-Ww
A support of an implication is the set of object, whose intents respect this im-

plication.

An implication basis of context K is defined as a set £ of implications of K,

from which any valid implication for K can be deduced by the Armstrong rules
and none of the proper subsets of £ has this property.
A minimal implication basis is an implication basis minimal in the number of
implications. A minimal implication basis was defined in [GD86] and is known
as canonical implication basis. In paper [Gan84] the premises of implications
from canonical base were characterized in terms of pseudo-intents. A subset of
attributes P C M is called pseudo-intent, if P # P" and for every such pseudo-
intent @ such that Q C P, one has Q" C P. Canonical implication basis looks
then as follows: {P — (P” \ P) | P - pseudo-intent}.

3 Classification and Exploration of Errors

Every object in the context is described by the set of attributes, that are re-
lated to this object. In the “real world” there may exist dependencies between
attributes. Consider possible cases in terms of implications:

1. Valid in “‘real world”” dependency A — B, A, B C M is not respected by an
object
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2. Valid in “real world’”” dependency A — B, A, B C M is not respected by an
object

3. Combination of two above cases, i.e. valid in ‘“real world”’ dependency A —
BAC, A,B,C C M is not respected by an object

4. Valid in ‘‘real world” dependency A — bV e, A C M,b,c € M is not
respected by an object

5. Valid in ‘“‘real world” dependency A — F, where A C M, F is any logical
formula not considered above, is not respected by an object (for example,
F=aV(bAT)

Unfortunately, it turns out that not all possible errors might be found using
implications of a context. Namely, case 4 corresponds to reducible object in a
context, while it is known that reducible objects change neither the lattice nor
the implication basis of a context (definitions of reducible objects and lattices of
contexts are not given in this paper for the sake of compactness, for definitions
and further information see [GW99]).

Every implication A — B can be regarded as a conjunction of implications A —
By and A — By, B; U By = B. Thereby, in Case 5 in F top level conjunctions
can be dealt with easily. However, as in Case 4 we do not know how to reveal
errors that have disjunctions in their conclusion.

Let £ be a set of all implications valid for a context K. From any implication
basis any valid implication for the context should be deducible by definition. It
means that if an object does not respect an implication from £, then it should
not respect an implication from implication basis of the context. Then an expert
is asked whether this implication is valid. If he accepts this implication, then the
object is an error. All the errors of the first class are caught using this approach.

4 An Example

The formal context on Fig. 1 shows the properties of convex quadrangles. The
context is not full, i.e. not all possible convex quadrangles are considered, and
some objects in the context are reducible (do not bring new information in
an implication basis of the context). 7 attributes are considered. Attributes ‘has
equal legs’ and ‘has equal angles’ require at least two angles/legs of a quadrangle
to be equal. Some dependencies on attributes are obvious, for example, it is clear
that if all angles are equal in a quadrangle then this quadrangle definitely has
equal angles.

4 errors are presented on Fig 2. Errors are added to the context on Fig. 1 one
at a time. One should treat an error as an object to be added to the context.
The context without errors on Fig. 1 is denoted K , (-)" is the corresponding
derivation operator.

The context of errors on Fig. 2 is denoted Ke , (+)€ is the derivation operator
for Ke.

Example 1. {Error 1}¢ ={has equal legs, at least 3 different angles, all legs equal}
{Error 1} ={all angles equal, all legs equal, at least 3 different angles, at least
3 different legs, has equal angles, has equal legs, has right angle}
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Canonical basis of the context on Fig. 1 looks as follows:

. at least 3 different angles — at least 3 different legs

. all angles equal — has equal angles, has equal legs, has right angle

. all legs equal — has equal angles, has equal legs

. has right angle, at least 3 different legs — at least 3 different angles

. has equal angles, has equal legs, at least 3 different legs, all legs equal — has
right angle,at least 3 different angles, all angles equal

6. has equal angles, has equal legs, at least 3 different legs, all angles equal, has

right angle, at least 3 different angles — all legs equal
7. has right angle, has equal legs, all legs equal, has equal angles — all angles
equal

T W N =

Consider Error2.
{Error 2}¢ ={has equal legs, has right angle, all legs equal, all angles equal}
This object does not respect Implications 2 and 3. It is easy to see that both
implications are valid in “real world”. Thereby, an expert recognizes object as
an error.

5 Improvements

Although this approach gives the needed result, there are some problems re-
maining. The problem of producing canonical basis with known algorithms is
intractable. Recent theoretical results suggest that existing approaches for com-
puting the stem base may not lead to algorithms with better worst-case com-
plexity [DS11], [BK10]. One can use other bases (for example, advances were
achieved in computing proper premises [RDB11]), but known algorithms are
still too costly and non minimal bases do not guarantee to ask an expert mini-
mal yet sufficient number of questions.

Since we are only interested in implication corresponding to an object, it is not
necessary to compute a whole implication basis. Only the closure of object’s
intent may be considered. From monotonicity of the closure operator of the con-
text it follows that we do not lose any attributes that are erroneously not related
to an object. Nevertheless, the following case is possible. Let a set H C M be
the intent of an object such that Ag € G : H C ¢'. In this case H” = M and
the implication H — H' \ H has empty support. This is the case if an object
is an error of the second class, because in its intent impossible in “real world”
combination of attributes is contained. Although it is not the best solution, but
we can ask an expert if the combination of attributes in object’s intent is con-
sistent. In such a question we use information already input in the context, but
an expert should consider all possible combinations of attributes to be excessive.
Further on this question is not sufficient to reveal an error of the first class.

A better idea would be to investigate the subset of object’s intent. Even if
H" = M, we are still able to reveal an error of the first class, because we examine
all possible dependencies on the subset of object’s intent that were satisfied by
intents in the context. Searching through all the subsets of object’s intent leads
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to exponential time solution. Since we are only interested in such subsets that
are contained in at least one intent in the context, we may consider only the
intersections of object’s intent with intents in the context. This allows us to find
errors of the first class in polynomial time.

But we can do even better and replace the question about the consistency of set
of attributes in object’s intent with an implication. This idea is better because
in case of implication an expert is explicitly shown an attribute that breaks
the dependencies satisfied in the context. For this purpose we should consider
complementary context. If we investigate the closures of the subsets of initial
object’s intent in the context K, := {G, M UM, I UT}, then we are also able to
find errors of the second class in the very same manner, that we discussed before
for the first class. Thus we are able to find all the errors of first three classes.

5.1 Pseudocode

Below is presented the pseudocode of the method described above.

inspect_with_negations(K:=(G, M, I), HCM)
1. Candidates = {object’'NH | objecteG}
2. Candidates = {candidatecCandidates |
AceCandidates: candidateCc}
3. Result = 0
4. for candidate ¢n Candidates:
5. 4f candidate’ /~ != candidate:
6. Result.add(candidate — candidate’ ’ \(candidateUH))
7. return Result

H is the intent of an object to be added to the context K. In the first line we com-
pute the set of all subsets that could produce desired implication. Since closure
operator is monotone we may consider only maximal elements of Candidates. In
the second line we discard all the non-maximal elements. In line 4 - 6 we check if
closure differs from the intersection, i.e. there are attributes in conclusion of fu-
ture implication. Here (-)’ ” denotes derivation operator of the context K. There
is no need to check if candidate” is contained in H, because all the attributes
from H\candidate are not contained in the intent of at least one object, from
which this candidate was generated in the first line.

It is possible to provide further optimisation. In the first line we can stop gener-
ating Candidates after all the maximal subsets satisfying condition were found.

6 Results

FCA package for Python written by Nikita Romashkin was used for implemen-
tation [Rom).

The name inspect_dg is used to denote the function implementing the method
described in Section 3.
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Inspecting Errorl:

inspect\_dg
at least 3 different angles — at least 3 different legs
all legs equal — has equal angles, has equal legs
inspect\_with\_negation
has equal legs, at least 3 different angles — at least 3 different legs, all legs equal
has equal legs, all legs equal — has equal angles, at least 3 different angles

Both implications in the result of v without overlined attributes in conclu-
sions are deducible from the two implications in the result of inspect_dg. The
two implications in the result of inspect_dg with the intent of Errorl added in

the premise are deducible from the implications in the result of inspect_with_negation.

Considering a particular object and corresponding implications we can always

add object’s intent to the premise(s), because attributes from its intent are al-

ways related to the object.

Errors of the second class are not caught using canonical base. As described

above such errors correspond to inconsistent in the context combination of at-

tributes. Nevertheless, inspect_with_negation catches such errors.
Inspecting Error2:

inspect\_dg
all angles equal — has equal angles, has equal legs, has right angle
all legs equal — has equal angles, has equal legs
inspect\_with\_negation
has right angle, has equal legs, all legs equal, all angles equal — has equal
angles

In this example we are able to ask even less number of questions to the
expert using inspect_with_negation as with inspect_dg. This is the result
of finding implications generated by maximal subsets of object’s intent. Again,
adding object’s intent to the premises of implications in the result of inspect_dg
makes both groups mutually deducible.

Inspecting Error3:

inspect\_dg
all angles equal — has equal angles, has equal legs, has right angle
all legs equal — has equal angles, has equal legs
inspect\_with\_negation
has equal angles, has right angle, at least 3 different legs, at least 3 different
angles — all angles equal, all legs equal
has equal angles, has right angle, all legs equal, all angles equal — has equal
legs, at least 3 different angles, at least 3 different legs

The case of Error3 is more or less the same, as the case of Errorl. The
two groups of implications are mutually deducible under the same conditions as
before.
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Inspecting Error4:

inspect\_dg
has equal angles, has equal legs, at least 3 different legs, all legs equal — has
right angle, at least 3 different angles, all angles equal
inspect\_with\_negation
has equal angles, has equal legs, all legs equal — at least 3 different legs
has equal angles, has equal legs, at least 3 different legs — all legs equal

Error4 is a very special case when corresponding implication from canonical
basis has empty support. In this case even if implication from the result of
inspect_dg is rejected by an expert object may still be an error. This implication
is in fact excessive, because the premise is not contained in any intent in the
context and all attributes, that are not in premise, are in conclusion. Using
inspect_with_negation we are able to ask an expert more sensible questions.
Unfortunately, groups of implications are not deducible from each other in this
example.

7 Conclusion

An algorithm for finding errors in new objects of the context was proposed. As
opposed to finding not respected implications in an implication basis proposed
algorithm finishes in polynomial time. Moreover, in case of inconsistent combina-
tion of attributes in object’s intent it is possible to state more sensible questions.
In some cases the number of produced questions to an expert is less than the
number of not respected implications in the canonical basis of the context.
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Abstract. Rare itemsets are an important sort of patterns that have
a wide range of practical applications. Although mining rare patterns
poses specific algorithmic problems, it is yet insufficiently studied. In a
previous work, we proposed a levelwise approach for rare itemset mining,.
Here, we examine the benefits of depth-first methods for that task as such
methods are known to outperform the levelwise ones in many practical
cases.

1 Introduction

Pattern mining is a basic data mining task whose aim is to uncover the hidden
regularities in a set of data [1]. As a simplifying hypothesis, the overwhelming
majority of pattern miners chose to look exclusively on item combinations that
are sufficiently frequent, i.e., observed in a large enough proportion of the trans-
actions. Yet such a hypothesis fails to reflect the entire variety of situations in
data mining practice [2]. In some specific situations, frequency may be the exact
opposite of pattern interestingness. The reason behind is that in these cases, the
most typical item combinations from the data correspond to widely-known and
well-understood phenomena. In contrast, less frequently occurring patterns may
point to unknown or poorly studied aspects of the underlying domain [2].

In a previous paper [3], we proposed a bottom-up, levelwise approach that
traverses the frequent zone of the search space. In this paper we are looking for
a more efficient manner for traversing the frequent part of the Boolean lattice,
using a depth-first method. Indeed, depth-first frequent pattern miners have
been shown to outperform breadth-first ones on a number of datasets.

2 Basic Concepts

Consider the following 6 x 5 sample dataset: D = {(1, ABCDE), (2, BCD),
(3, ABC), (4, ABE), (5, AE), (6, DE)}. Throughout the paper, we will refer
to this example as “dataset D”.
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Consider a set of objects or transactions O = {01,09,...,0m}, a set of at-
tributes or items A = {a1,as,...,a,}, and a relation R C O x A. A set of items
is called an itemset. Each transaction has a unique identifier (¢id), and a set of
transactions is called a tidset. The tidset of all transactions sharing a given item-
set X is its image, denoted by ¢(X). The length of an itemset X is |X|, whereas
an itemset of length ¢ is called an i-itemset. The (absolute) support of an itemset
X, denoted by supp(X), is the size of its image, i.e. supp(X) = [t(X)].

The lattice is separated into two segments or zones through a user-provided
“minimum support” threshold, denoted by min_supp. Thus, given an itemset X,
if supp(X) > min_supp, then it is called frequent, otherwise it is called rare (or
infrequent). In the lattice in Figure 1, the two zones corresponding to a support
threshold of 2 are separated by a solid line. The rare itemset family and the
corresponding lattice zone is the target structure of our study.

Definition 1. X subsumes Z, iff X D Z and supp(X) = supp(Z) [4].

Definition 2. An itemset Z is generator if it has mo proper subset with the
same support.

Property 1. Given X C A, if X is a generator, then VY C X, Y is a generator,
whereas if X is not a generator, VZ D X, Z is not a generator [5].

Proposition 1. An itemset X is a generator iff supp(X) # min;ex (supp(X \

{i})) [6].

Each of the frequent and rare zones is delimited by two subsets, the maxi-
mal elements and the minimal ones, respectively. The above intuitive ideas are
formalized in the notion of a border introduced by Mannila and Toivonen in [7].
According to their definition, the maximal frequent itemsets constitute the pos-
itive border of the frequent zone' whereas the minimal rare itemsets form the
negative border of the same zone.

Definition 3. An itemset is a maximal frequent itemset (MFI) if it is frequent
but all its proper supersets are rare.

Definition 4. An itemset is a minimal rare itemset (mRI) if it is rare but all
its proper subsets are frequent.

The levelwise search yields as a by-product all mRIs [7]. Hence we prefer
a different optimization strategy that still yields mRIs while traversing only
a subset of the frequent zone of the Boolean lattice. It exploits the minimal
generator status of the mRIs. By Property 1, frequent generators (FGs) can
be traversed in a levelwise manner while yielding their negative border as a
by-product. It is enough to observe that mRIs are in fact generators:

Proposition 2. All minimal rare itemsets are generators [3].

! The frequent zone contains the set of frequent itemsets.
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Fig. 1. The powerset lattice of dataset D.

Finding Minimal Rare Itemsets in a Levelwise Manner

As pointed out by Mannila and Toivonen [7], the easiest way to reach the negative
border of the frequent itemset zone, i.e., the mRlIs, is to use a levelwise algorithm
such as Apriori. Indeed, albeit a frequent itemset miner, Apriori yields the mRlIs
as a by-product.

Apriori-Rare [3] is a slightly modified version of Apriori that retains the
mRIs. Thus, whenever an i-long candidate survives the frequent ¢ — 1 subset
test, but proves to be rare, it is kept as an mRI.

MRG-Ezp [3] produces the same output as Apriori-Rare but in a more effi-
cient way. Following Proposition 2, MRG-FEzp avoids exploring all frequent item-
sets: instead, it looks after frequent generators only. In this case mRlIs, which are
rare generators as well, can be filtered among the negative border of the frequent
generators. The output of MRG-Fxp is identical to the output of Apriori-Rare,
i.e. both algorithms find the set of mRIs.

3 Finding Minimal Rare Itemsets in a Depth-First
Manner

Eclat [8] was the first FI-miner to combine the vertical encoding with a depth-
first traversal of a tree structure, called IT-tree, whose nodes are X x t(X) pairs.
Eclat traverses the IT-tree in a depth-first manner in a pre-order way, from
left-to-right [8] (see Figure 2).
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Fig. 2. Left: pre-order traversal with FEclat; Right: reverse pre-order traversal with
Eclat. The direction of traversal is indicated in circles

3.1 Talky-G

Talky-G [9] is a vertical FG-miner following a depth-first traversal of the IT-
tree and a right-to-left order on sibling nodes. Talky-G applies an inclusion-
compatible traversal: it goes down the IT-tree while listing sibling nodes from
right-to-left and not the other way round as in Eclat.

The authors of [10] explored that order for mining calling it reverse pre-order.
They observed that for any itemset X its subsets appear in the IT-tree in nodes
that lay either higher on the same branch as (X,#(X)) or on branches to the
right of it. Hence, depth-first processing of the branches from right-to-left would
perfectly match set inclusion, i.e., all subsets of X are met before X itself. While
the algorithm in [10] extracts the so-called non-derivable itemsets, Talky-G uses
this traversal to find the set of frequent generators. See Figure 2 for a comparison
of Fclat and its “reversed” version.

3.2 Walky-G

Since Walky-G is an extension of Talky-G, we also present the latter algorithm
at the same time. Walky-G, in addition to Talky-G, retains rare itemsets and
checks them for minimality.

Hash structure. In Walky-G a hash structure is used for storing the already
found frequent generators. This hash, called fgMap, is a simple dictionary with
key /value pairs, where the key is an itemset (a frequent generator) and the value
is the itemset’s support.2 The usefulness of this hash is twofold. First, it allows a
quick look-up of the proper subsets of an itemset with the same support, thus the
generator status of a frequent itemset can be tested easily (see Proposition 1).
Second, this hash is also used to look-up the proper subsets of a minimal rare
candidate. This way rare but non-minimal itemsets can be detected efficiently.

Pseudo code. Algorithm 1 provides the main block of Walky-G. First, the
IT-tree is initialized, which involves the creation of the root node, representing

2 In our implementation we used the java.util.HashMap class for fgMap.
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Algorithm 1 (main block of Walky-G):

// for quick look-up of (1) proper subsets with the same support
// and (2) one-size smaller subsets:
fgMap < 0 /] key: itemset (frequent generator); value: support

)
)
)
)
) root.itemset <~ @ // root is an IT-node whose itemset is empty
) // the empty set is included in every transaction:
) root.tidset + {all transaction IDs}
) fgMap.put(0,|0|) // the empty set is an FG with support 100%
) loop over the vertical representation of the dataset (attr) {
) if (min_supp < attr.supp < |O|) {

11) // |O] is the total number of objects in the dataset
) root.addChild(attr) // attr is frequent and generator
)}
)
)
)
)
)
)
)
)

if (0 < attr.supp < min_supp) {
saveMri(attr) // attr is a minimal rare itemset

loop over the children of root from right-to-left (child) {
saveFg(child) // the direct children of root are FGs
extend(child) // discover the subtree below child

the empty set (of 100% support, by construction). Walky-G then transforms
the layout of the dataset in vertical format, and inserts below the root node all
1-long frequent itemsets. Such a set is an FG whenever its support is less than
100%. Rare attributes (whose support is less than min_supp) are minimal rare
itemsets since all their subsets (in this case, the empty set) are frequent. Rare
attributes with support 0 are not considered.

The saveMri procedure processes the given minimal rare itemset by storing
it in a database, by printing it to the standard output, etc. At this point, the
dataset is no more needed since larger itemsets can be obtained as unions of
smaller ones while for the images intersection must be used.

The addChild procedure inserts an IT-node under a node. The saveFg pro-
cedure stores a given FG with its support value in the hash structure fgMap.

In the core processing, the extend procedure (see Algorithm 2) is called
recursively for each child of the root in a right-to-left order. At the end, the IT-
tree contains all FGs. Rare itemsets are verified during the construction of the
IT-tree and minimal rare itemsets are retained. The extend procedure discovers
all FGs in the subtree of a node. First, new FGs are tentatively generated from
the right siblings of the current node. Then, certified FGs are added below the
current node and later on extended recursively in a right-to-left order.

The getNextGenerator function (see Algorithm 3) takes two nodes and re-
turns a new FG, or “null” if no FG can be produced from the input nodes. In
addition, this method tests rare itemsets and retains the minimal ones. First,
a candidate node is created by taking the union of both itemsets and the in-
tersection of their respective images. The input nodes are thus the candidate’s
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Algorithm 2 (“extend” procedure):

Method: extend an IT-node recursively (discover FGs in its subtree)
Input: an IT-node (curr)

1) loop over the right siblings of curr from left-to-right (other) {
2) generator < getNextGenerator(curr, other)

3) if (generator # null) then curr.addChild(generator)

1)

5) loop over the children of curr from right-to-left (child) {

6) saveFg(child) // child is a frequent generator

7) extend(child) // discover the subtree below child

5)

}

parents. Then, the candidate undergoes a frequency test (test 1). If the test fails
then the candidate is rare. In this case, the minimality of the rare itemset cand
is tested. If all its one-size smaller subsets are present in fgMap then cand is
a minimal rare generator since all its subsets are FGs (see Property 1). From
Proposition 2 it follows that an mRG is an mRI too, thus cand is processed
by the saveMri procedure. If the frequency test was successful, the candidate
is compared to its parents (test 2): if its tidset is equivalent to a parent tidset,
then the candidate cannot be a generator. Even with both outcomes positive, an
itemset may still not be a generator as a subsumed subset may lay elsewhere in
the IT-tree. Due to the traversal strategy in Walky-G, all generator subsets of
the current candidate are already detected and the algorithm has stored them
in fgMap (see the saveFg procedure). Thus, the ultimate test (test 3) checks
whether the candidate has a proper subset with the same support in fgMap. A
positive outcome disqualifies the candidate.

This last test (test 3) is done in Algorithm 4. First, one-size smaller subsets
of cand are collected in a list. The two parents of cand can be excluded since
cand was already compared to them in test 2 in Algorithm 3. If the support
value of one of these subsets is equal to the support of cand, then cand cannot
be a generator. Note that when the one-size smaller subsets are looked up in
fgMap, it can be possible that a subset is missing from the hash. It means that
the missing subset was tested before and turned out to subsume an FG, thus the
subset was not added to fgMap. In this case cand has a non-FG subset, thus
cand cannot be a generator either (by Property 1).

Candidates surviving the final test in Algorithm 3 are declared FG and added
to the IT-tree. An unsuccessful candidate X is discarded which ultimately pre-
vents any itemset Y having X as a prefix to be generated as candidate and hence
substantially reduces the overall search space. When the algorithm stops, all fre-
quent generators (and only frequent generators) are inserted in the IT-tree and
in the fgMap structure. Furthermore, upon the termination of the algorithm,
all minimal rare itemsets have been found. For a running example, see Figure 3.
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Algorithm 3 (“getNextGenerator” function):

Method: create a new frequent generator and filter minimal rare itemsets
Input: two IT-nodes (curr and other)
Output: a frequent generator or null

cand.itemset <— curr.itemset U other.itemset
cand.tidset — curr.tidset N other.tidset
if (cardinality(cand.tidset) < min_supp) // test 1: frequent?
{ // now cand is an mRI candidate; let us test its minimality:
if (all one-size smaller subsets of cand are in fgMap) {
saveMri(cand) // cand is an mRI, save it

1
2
3
4
5
6
7
8 return null  // not frequent
9)}
0 / else, if it is frequent; test 2:

((cand.tidset = curr.tidset) or (cand.tidset = other.tidset)) {

return null // not a generator

}
// else, if it is a potential frequent generator; test 3:
if (candSubsumesAnFg(cand)) {

return null // not a generator

// if cand passed all the tests then cand is a frequent generator
return cand

)
)
)
)
)
)
)
)
)
)//
11) if
12)
13)
14)
15)
16)
17)
18) //
19)

l:l frequent generator (FG) {}x 123456
D minimal rare itemset (mRI)

! @[Bx1234] | @[Cx123] @[Dx126] (D[Ex 1456 |

‘
| |
‘
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Fig.3. The IT-tree built during the execution of Walky-G on dataset D with
min_supp = 2 (33%). Notice the two special cases: ACE is not an mRI because of
CE; ABF is not an FG because of BE.

4 Conclusion

We presented an approach for rare itemset mining from a dataset that splits
the problem into two tasks. Our new algorithm, Walky-G, limits the traversal
of the frequent zone to frequent generators only. Our approach breaks with the
dominant levelwise algorithmic schema since the traversal is achieved through a
depth-first strategy.
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Algorithm 4 (“candSubsumesAnFg” function):

Method: verify if cand subsumes an already found FG
Input: an IT-node (cand)

1
2
3
4
5
6
7
8
9
10

11
12
13
14

Tl o ol o =2

subsets < {one-size smaller subsets of cand minus the two parents}
loop over the elements of subsets (ss) {
if (ss is stored in fgMap) {
stored_support < fgMap.get(ss) // get the support of ss
if (stored_support = cand.support) {
return true // case 1: cand subsumes an FG
}

else // if ss is not present in fgMap
{ // case 2: cand has a non-FG subset = cand is not an FG either
return true

return false // if we get here then cand is an FG
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Abstract. Software system Cordiet-FCA is presented, which is designed for
knowledge discovery in big dynamic data collections, including texts in natural
language. Cordiet-FCA allows one to compose ontology-controlled queries and
outputs concept lattice, implication bases, association rules, and other useful
concept-based artifacts. Efficient algorithms for data preprocessing, text pro-
cessing, and visualization of results are discussed. Examples of applying the
system to problems of medical diagnostics, criminal investigations are consid-
ered.

Keywords: Formal Concept Analysis, Data Mining, Natural Language Pro-
cessing, Software Tool, Visualization

1 Introduction

In this paper we introduce the software system Cordiet-FCA for data mining and
knowledge discovery based on the Cordiet-DMS (Data Mining System) platform and
used primarily the Formal Concept Analysis (FCA) [1] as theoretical basis. FCA
emerged in the 1980's from attempts to restructure lattice theory in order to promote
better communication between lattice theorists and potential users of lattice theory.
Since its early years, Formal Concept Analysis has developed into a research field in
its own right with a thriving theoretical community and a rapidly expanding range of
applications in information and knowledge processing including visualization, data
analysis (mining) and knowledge management.

The system was designed especially for unstructured data analysis. In case studies
we applied Cordiet-FCA to the analysis of publications on FCA. The real-life datasets
include criminal data (for example, chat conversations of pedophiles) and, in nearest
future, medical and emergency rescue data.
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2 Methodology

Software package Cordiet-DMS is a universal extendible software platform intended
to build data mining and knowledge discovery tools for various application fields.
This platform inspired by CORDIET methodology (abbreviation of Concept Relation
Discovery and Innovation Enabling Technology) [2], developed by J. Poelmans in
K.U. Leuven and P. Elzinga in Amsterdam-Amstelland police. The methodology
allows one to obtain new knowledge from the data in iterative ontology-controlled
process. The package is based on modern methods and algorithms of data analysis,
technologies for manipulating big data collections, data visualization, reporting, and
interactive processing techniques. There are four base principles:

1. Iterative process of data analysis using ontology-controlled queries and interactive
artifacts (such as concept lattice, etc.).

2. Separation of processes of data querying (from various data sources) and data ana-
lyzing (of locally saved immutable snapshots).

3. Dividing data processing into four stages: access to external data sources and load-
ing data to local storage; access to the local storage and generating snapshots; ac-
cess to one or many snapshots and building basic analysis artifacts; access to the
artifact and analyzing derivative artifacts.

4. Expendability on three levels: customizing settings of data access components,
query builders, solvers and visualizers; writing scripts (macros); developing com-
ponents (add-ins).

3 Current software properties

At this moment we introduce the version 0.9 of Cordiet-FCA in form of local Win-
dows application. This version uses local XML-storage and integrated research envi-
ronment with snapshot profiles editor, query builder, ontology editor, and a set of
solvers and visualizers. The main solvers can produce concept lattice, sublattices,
association rules, and implications, calculate stability indexes, similarity measures for
contexts and concepts, etc.

We use Microsoft and Embarcadero programing environments and different pro-
graming languages (C++, C#, Delphi, Python and others). For scripting we use Delphi
Web Script [3]. Also we are developing a distributed version based on Web-services.

3.1  Text processing

Cordiet-FCA has a query language for transforming data snapshot into basic analy-
sis artifacts. The main artifact for FCA methods is a formal context.
The language describes so called rules and consists from four main rules types:

— Simple rule generates one attribute from structured fields of snapshot.
— Scaling rule generates several attributes from structured fields based on nominal or
ordinal scale.
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— Text mining rule generates one attribute from unstructured text fields.
— Multivalued rule generates one or many attributes from multivalued field (array).

Also we have temporal rules (for manipulating with date and time) and compound
rules (for merging all types of rules into one). As usual we don’t need to write a query
from scratch. We can select some entities in the ontology editor and automatically
generate a query. Text mining rule can use terms (set of synonymous) and term-
clusters (set of terms) from ontology entities.

Cordiet-FCA uses Lucene [4] to index the content of the unstructured text fields in
the snapshots using the description of the term attributes in the ontology editor. The
resulting index is later used to quickly validate whether the text mining or compound
rule return true or not. In fig. 1 we show how system visualizes the profile-controlled
description of snapshots records (Report Viewer) and query builder (the list of rules
and Rule Editor).
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Fig. 1. Opened base of police reports and query builder
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3.2 Concept lattice browser

The main mode of user interaction in Cordiet-FCA is interactive work in the concept
lattice browser. The lattice can be used to browse the collection of objects with binary
attributes given as a result of query to snapshot (with structured and text attributes).
The user can select and deselect objects and attributes and the lattice diagram is modi-
fied accordingly. The user can click on a concept. The screen shows in a separate
window the names of the objects in the extent and the names of the attributes in the
intent. Names of objects and attributes are linked with initial snapshot records and
fields. If the user clicks on the name of an object, the content of the object is shown in
a separate window according to snapshot profile. If the user clicks on the name of an
attribute, its content is also shown in a separate window.

Fig. 2 demonstrates the browser (building sublattice). The multidocument interface
allows us to inspect several lattices and moreover the system remembers all links
between derivative artifacts.
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Fig. 2. Concept lattice browser

The user can customize the lattice browsing settings. The user can specify whether
the nodes corresponding to concepts show the numbers of all (or only the new) ob-
jects and all (or only the new) attributes in extent and intent respectively, or the names
of all (or only the new) objects and all (or only the new) attributes. Separate settings
can be specified for the selected concept, the concepts in the order filter and the re-
mainder of the lattice. If the user presses shift and at the same time selects a concept,
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the order filter generated by this concept is shown. The colors of concepts and edges
can be customized also.

A right click on the name of an attribute shows the user several options: the user
can choose to build a sublattice containing only objects having the selected attribute,
to build a sublattice containing only objects which do not have the selected attribute,
or to find the concept in which the attribute first occurs starting from the supremum of
the lattice.

3.3 Validation and applications

Main solvers of the system were validated on the classical test sets (from Frequent
Itemset Mining Dataset Repository and UCI Repository). Because of constant im-
proving of basic algorithms and data structures we don't have a good comparable set
of benchmarks now.

We used Cordiet-FCA in the research work of the Laboratory of Intelligent Sys-
tems and Structural Analysis in NRU HSE and in some applied tasks connected with
medical informatics, crime investigations, etc. Fig. 3 demonstrates an example of
analyses of a pedophile behavior (it is based on information from chat conversations
in Internet).
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Fig. 3. Sample of concepts exploration (filter, ideal and selection of attributes)
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4 Comparison with existing well-known FCA software

Comparing Cordiet-FCA with big analytic software like IBM i2 Analyst's Notebook
or QSR NVivo shows that the latter do not have a normal set of FCA tools and have a
completely different methodology of data analysis. We also compare basic functional-
ity of the system with well-known tools for building and visualizing FCA artifacts
(table 1).

Table 1. Some well-known FCA software tools

Program title Author Web-site

Concept Explorer ~ S.A.Evtuchenko conexp.sourceforge.net
FcaStone U. Priss et al fcastone.sourceforge.net
Conflexplore P.Borza, O.Sabou code.google.com/p/openfca
Galicia P.Valtchev et al www.iro.umontreal.ca/~galicia
Toscanal University of Queensland, toscanaj.sourceforge.net

Technical University
of Darmstadt

All of the tools from Table 1 have unique features. For example, Concept Explorer
has interesting modes of visualization of a lattice and good default layout, Galicia
introduces the generic MultiFCA approach to deal with a set of contexts, Toscanal
can visualize nested lattices and involves an editor of conceptual schemas on relation-
al databases, FcaStone was primarily intended for file format conversion and other
low level operations. Unfortunately, most useful tools for end-user (ConExp and Tos-
canalJ) did not have official updates from 2006.

The main problem of compared tools is low limits of size of interactively analyzed
artifacts (for example, lattices with more than 8000 concepts can hardly be operated
and visualized on modern hardware). This is mainly due to the use of Java and cross-
platform GUI or different goals of developing. The current version of Cordiet-FCA
can manipulate bigger lattices. After all planned optimizations we will present com-
parison of implementations of all basic algorithms in the form of compiled compo-
nents and scripts (Cordiet-DMS platform has built-in tools for benchmarking).

5 Conclusion and future work

Cordiet-DMS is a powerful platform for developing applied software tools, for exam-
ple, Cordiet-FCA for analyzing data with FCA. This analysis can give us insights into
underlying conceptual structure of the data. For the dynamic text collections we can
prepare several profiles and iteratively check the sequence of concept lattices.

We assume to improve methodology, extend the set of solvers, optimize some al-
gorithms and use proposed system in different data mining tasks. Some of new solv-
ers will be based on concept stability [5] and similarity [6] calculation algorithms.
Also we will extend our platform with triadic concept analysis and noise-robust
triclustering methods [7]. Also brand new lattice visualization technique is almost
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done with antialiasing, scaling, iceberg concept lattices drawing and more. The next
major release of the software (1.0) is planned for November 2012.

It’s important to us to provide a freeware version of Cordiet-FCA, that can be ex-
tended by community and used in various application fields.
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