
Workshop Notes

International Workshop

“What can FCA do for Artificial Intelligence?”

FCA4AI

International Joint Conference on Artificial Intelligence

IJCAI 2013

August 4, 2013

Beijing, China

Editors

Sergei O. Kuznetsov (NRU HSE Moscow)

Amedeo Napoli (LORIA Nancy)

Sebastian Rudolph (TU Dresden)

http://fca4ai.hse.ru/2013/

2

What FCA Can Do for Artificial Intelligence?

FCA4AI: An International Workshop

Preface

This is the second edition of the FCA4AI workshop, the first edition being associated to
the ECAI 2012 Conference, held in Montpellier, in August 2012 (see http://www.fca4ai.

hse.ru/). In particular, the first edition of the workshop showed that there are many AI
researchers interested in FCA. Based on that, the three co-editors decided to organize a
second edition of the FCA4AI workshop at the IJCAI 2013 Conference in Beijing.

Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data
analysis and classification. FCA allows one to build a concept lattice and a system of
dependencies (implications) which can be used for many AI needs, e.g. knowledge processing
involving learning, knowledge discovery, knowledge representation and reasoning, ontology
engineering, as well as information retrieval and text processing. Thus, there exist many
“natural links” between FCA and AI.

Recent years have been witnessing increased scientific activity around FCA, in particular
a strand of work emerged that is aimed at extending the possibilities of FCA w.r.t. knowl-
edge processing, such as work on pattern structures and relational context analysis. These
extensions are aimed at allowing FCA to deal with more complex than just binary data,
both from the data analysis and knowledge discovery points of view and from the knowledge
representation point of view, including, e.g., ontology engineering.

All these works extend the capabilities of FCA and offer new possibilities for AI activities
in the framework of FCA. Accordingly, in this workshop, we are interested in two main issues:

• How can FCA support AI activities such as knowledge processing (knowledge discov-
ery, knowledge representation and reasoning), learning (clustering, pattern and data
mining), natural language processing, information retrieval.

• How can FCA be extended in order to help AI researchers to solve new and complex
problems in their domains.

The workshop is dedicated to discuss such issues. The papers submitted to the workshop
were carefully peer-reviewed by two members of the program committee and 11 papers with
the highest scores were selected. We thank all the PC members for their reviews and all the
authors for their contributions. We also thank the organizing committee of ECAI-2012 and
especially workshop chairs Jérôme Lang and Michèle Sebag for the support of the workshop.

The Workshop Chairs

Sergei O. Kuznetsov
National Research University Higher Schools of Economics, Moscow, Russia

Amedeo Napoli
LORIA (CNRS – INRIA – Université de Lorraine), Vandoeuvre les Nancy, France

Sebastian Rudolph
Technische Universität Dresden, Germany

3

Program Committee

Mathieu D’Aquin (Open University, UK)

Franz Baader (Technische Universität Dresden, Germany)

Karell Bertet (Université de La Rochelle, France, Germany)

Claudio Carpineto (Fondazione Ugo Bordoni, Roma, Italy)

Felix Distel (Technische Universität Dresden, Germany)

Peter Eklund (University of Wollongong, Australia)

Sébastien Ferré (IRISA Rennes, France)

Pascal Hitzler (Wright State University, Dayton, Ohio, USA)

Dmitry I. Ignatov (NRU Higher School of Economics, Moscow, Russia)

Mehdi Kaytoue (INSA - LIRIS Lyon, France)

Markus Krötzsch (University of Oxford, UK)

Sergei A. Obiedkov (NRU Higher School of Economics, Moscow, Russia)

Uta Priss (Ostfalia University of Applied Sciences, Wolfenbüttel, Germany)

Baris Sertkaya (SAP Dresden, Germany)

Henry Soldano (Université de Paris-Nord, France)

4

Table of Contents

2 FCA and pattern structures for mining care trajectories
Aleksey Buzmakov, Elias Egho, Nicolas Jay, Sergei O. Kuznetsov, Amedeo
Napoli and Chedy Räıssi . 7

3 Using pattern structures to support information retrieval with Formal Concept
Analysis
Vı́ctor Codocedo, Ioanna Lykourentzou, Hernan Astudillo and Amedeo Napoli 15

4 FCA-Based Concept Detection in a RosettaNet PIP Ontology
Jamel Eddine Jridi and Guy Lapalme . 25

5 Bases via Minimal Generator
Pablo Cordero, Manuel Enciso, Angel Mora Bonilla and Manuel Ojeda-Aciego 32

6 Debugging Program Code Using Implicative Dependencies
Artem Revenko . 37

7 Practical Computing with Pattern Structures in FCART Environment
Aleksey Buzmakov and Alexey Neznanov . 49

8 Towards Knowledge Structuring of Sensor Data Based on FCA and Ontology
Peng Wang, Wenhuan Lu, Zhaopeng Meng, Jianguo Wei and Françoise Fogelman-
Soulié . 53

5

6

FCA and pattern structures for mining care
trajectories

Aleksey Buzmakov1,2, Elias Egho1, Nicolas Jay1, Sergei O. Kuznetsov2,
Amedeo Napoli1, and Chedy Räıssi1

1 LORIA (CNRS – Inria NGE – U. de Lorraine), Vandœuvre-lès-Nancy, France
2 National Research University Higher School of Economics, Moscow, Russia

{aleksey.buzmakov, chedy.raissi}@inria.fr,
{elias.egho, nicolas.jay, amedeo.napoli}@loria.fr, skuznetsov@hse.ru

Abstract. In this paper, we are interested in the analysis of sequential
data and we propose an original framework based on Formal Concept
Analysis (FCA). For that, we introduce sequential pattern structures,
an original specification of pattern structures for dealing with sequential
data. Pattern structures are used in FCA for dealing with complex data
such as intervals or graphs. Here they are adapted to sequences. For that,
we introduce a subsumption operation for sequence comparison, based on
subsequence matching. Then, a projection, i.e. a kind of data reduction
of sequential pattern structures, is suggested in order to increase the
efficiency of the approach. Finally, we discuss an application to a dataset
including patient trajectories (the motivation of this work), which is a
sequential dataset and can be processed with the introduced framework.
This research work provides a new and efficient extension of FCA to
deal with complex (not binary) data, which can be an alternative to the
analysis of sequential datasets.

Keywords: formal concept analysis, pattern structures, sequential pat-
tern structures, sequences

Introduction

Sequence data is largely present and used in many applications. Consequently,
mining sequential patterns from sequence data has become an important and
crucial data mining task. In the last two decades, the main emphasis has been on
developing efficient mining algorithms and effective pattern representations [1–5].
However, the problem with traditional sequential pattern mining algorithms (and
generally with all pattern enumeration algorithms) is that they generate a large
number of frequent sequences while few of them are truly relevant. Moreover, in
some particular cases, only sequential patterns of a certain type are of interest
and should be mined first. Are we able to develop a framework for taking into
account only patterns of required types? In addition, another drawback for these
pattern enumeration algorithms is that they depend on a user selected support
threshold, which is usually hard to be properly set by non-experts. How can one
avoid the setting of support threshold while having optimal pattern analysis?

The above questions can be answered by addressing the problem of analyzing
sequential data with the formal concept analysis framework (FCA), an elegant

7

mathematical approach to data analysis [6], and pattern structures, an extension
of FCA that handles complex data [7]. We explain the usage of projections which
are mathematical functions respecting certain properties and allow to reduce
the computational costs by reducing the volume of resulting patterns. Such a
reduction helps an expert to interpret the extracted sequential patterns and
reduces the famous “pattern flooding”.

In this paper, we develop a novel and efficient approach for working with
sequential pattern structures in FCA. The rest of the paper is organized as
follows. Section 1 introduces main definitions of FCA and pattern structures.
The next section defines sequential pattern structures. Then, before concluding
the results are presented and discussed in Section 3.

1 FCA and Pattern Structures

FCA [6] is a mathematical formalism having many applications in data analysis.
Pattern structures is a generalization of FCA for dealing with complex struc-
tures, such as sequences or graphs [7]. As it is a generalization it is enough to
introduce only pattern structures.

Definition 1. A pattern structure is a triple (G, (D,u), δ), where G is a set of
objects, (D,u) is a complete meet-semilattice of descriptions and δ : G → D
maps an object to a description.

The lattice operation in the semilattice (u) corresponds to the similarity
between two descriptions d1 and d2, i.e. the description which is common between
d1 and d2. Standard FCA can be presented in terms of pattern structures in the
following way. The set of objects G remains, while the semilattice of descriptions
is (℘(M),∩), where ℘(M) is a powerset of M , and, thus, a description is a set
of attributes, and the similarity operation corresponding to the set intersection,
i.e. the similarity is the set of shared attributes. If x = {a, b, c} and y = {a, c, d}
then x u y = x ∩ y = {a, c}. The mapping δ : G → ℘(M) is given by, δ(g) =
{m ∈M | (g,m) ∈ I}, returning the describing set of attributes.

The Galois connection for a pattern structure (G, (D,u), δ) between the set
of objects and the semilattice of descriptions is defined as follows:

A� :=
l

g∈A
δ(g), for A ⊆ G

d� := {g ∈ G | d v δ(g)}, for d ∈ D

Given a set of objects A, A� returns the description which is common to all
objects in A. And given a description d, d� is the set of all objects whose de-
scription subsumes d. The partial order on D (v) is defined w.r.t. the similarity
operation u: c v d⇔ c u d = c, and c is subsumed by d.

Definition 2. A pattern concept of a pattern structure (G, (D,u), δ) is a pair
(A, d) where A ⊆ G and d ∈ D such that A� = d and d� = A, A is called the
pattern extent and d is called the pattern intent.

8

As in the standard case of FCA, a pattern concept corresponds to the max-
imal set of objects A whose description subsumes the description d, while there
is no e ∈ D, subsuming d, i.e. d v e, describing every object in A. The set of all
concepts can be partially ordered w.r.t. partial order on extents (dually, intent
patterns, i.e v), within a concept lattice.

It is wroth mentioning, that the size of the concept lattice can be exponential
w.r.t. to the number of objects, and, thus, we need a special ranking method to
select the most interesting concepts for further analysis. Several such techniques
are considered in [8], where it is shown that stability index [9] is more reliable
in noisy data. Thus, we decided to use this index in the current work.

An example of pattern structures is given by Table 1a and described in the
next sections, the corresponding lattice is depicted in Figure 1a.

2 Sequential Pattern Structures

2.1 An Example of Sequential Data

Patient Trajectory

p1 〈{a} ; {c, d} ; {b, a} ; {d}〉
p2 〈{c, d} ; {b, d} ; {a, d}〉
p3 〈{c, d} ; {b} ; {a} ; {a, d}〉

(a) Sequential dataset.

Subsequences Subsequences
ss1 〈{c, d} ; {b} ; {d}〉 ss5 〈{a} ; {d}〉
ss2 〈{d} ; {a}〉 ss6 〈{a, d}〉
ss3 〈{c, d} ; {b}〉 ss7 〈{a}〉
ss4 〈{c, d} ; {b} ; {a}〉

(b) Some common subsequences.

Table 1: A toy sequential dataset of patient medical trajectories.

A medical trajectory of a patient is a sequence of hospitalizations, where every
hospitalization is described by a set of medical procedures the patient underwent.
An example of medical trajectories for three patients is given in Table 1a. Patient
p1 had four hospitalizations and during the second hospitalization he underwent
procedures c and d. Patients may have a different number of hospitalizations.
Hereafter we use the following notation, different sequences are enumerated in
superscript (p1), while elements of a sequence are enumerated in the subscript
(p12 = {c, d}). One important task is to find the characteristic subsequences of
hospitalizations for patients to optimize hospitalization processes. For example,
we can find a strange sequence and, thus, motivate the deeper analysis of the
problems behind or we can find typical sequences that allow us to estimate the
treatment costs for a patient.

2.2 Partial Order on “Complex” Sequences

A sequence is constituted of elements from an alphabet. The classical subse-
quence matching task requires no special properties of the alphabet. Several
generalization of the classical case were made by introducing subsequence re-
lation based on itemset alphabet [10] or on multidimensional and multilevel
alphabet [11]. Here, we generalize the previous cases, requiring for an alphabet

9

({
p2
}

; p2
)({

p1
}

; p1
) ({

p3
}

; p3
)

({
p1, p2

}
; ss1, ss2

) ({
p1, p3

}
; ss3, ss5

) ({
p2, p3

}
; ss4, ss6

)

({
p1, p2, p3

}
; ss3, ss7

)

(∅; ∗)

(a) Original Lattice.

({
p2
}

; p2
)({

p1
}

; p1
) ({

p3
}

; p3
)

({
p1, p2

}
; ss1

) ({
p2, p3

}
; ss4

)

({
p1, p2, p3

}
;
)

(∅; ∗)

(b) Projected Lattice.

Fig. 1: The concept lattices for the pattern structure given by Table 1a. Concept
intents refers to sequences in Tables 1a and 1b.

to form a semilattice (E,uE)1. This generalization allows one to process in a
unified way all types of complex sequential data.

Definition 3. A sequence t = 〈t1; ...; tk〉 is a subsequence of a sequence s =
〈s1; ...; sn〉, denoted t ≤ s, iff k ≤ n and there exist j1, ..jk such that 1 ≤ j1 <
j2 < ... < jk ≤ n and for all i ∈ {1, 2, ..., k}, ti vE sji .

With complex sequences and such kind of subsequences the calculation pro-
cedures can be difficult, thus, to simplify the procedure, only “restricted” sub-
sequences are considered, where only the order of consequent elements is taken
into account, i.e. given a j1 in Definition 3, ji = ji−1 + 1 for all i ∈ {2, 3, ..., k}.
Such a restriction makes sens for our data, because a hospitalization is a discrete
event and it is likely that the next hospitalization has a relation with the previ-
ous one, for example, hospitalizations for treating aftereffects of chemotherapy.
Below the word “subsequence” refers to a “restricted” subsequence.

Based on Definition 3 and on the alphabet (℘(P),∩), the sequence ss1 in
Table 1b is a subsequence of p1 because if we set ji = i + 1 (Definition 3) then
ss11 v p12 ({c, d} ⊆ {c, d}), ss12 v p13 ({b} ⊆ {b, a}) and ss13 v p14 ({d} ⊆ {d}).

2.3 Meet-semilattice of Sequences

Using the previous definitions, we can precisely define the sequential pattern
structure. For that, we make an analogy with the pattern structures for graphs [12]
where the meet-semilattice operation u respects subgraph isomorphism. Thus,
we introduce a sequential meet-semilattice respecting subsequence relation. Given
an alphabet lattice (E,uE), D consists of sets of sequences based on E, such
that if d ∈ D contains a sequence s then all subsequences of s should be included
into d, ∀s ∈ d,@s̃ ≤ s : s̃ /∈ d. Similarity operation is the set intersection for two
sets of sequences. Given two patterns d1, d2 ∈ D, the set intersection operation
ensures that if a sequence s belongs to d1ud2 then any subsequence of s belongs
to d1ud2 and thus (d1ud2) ∈ D. As the set intersection operation is idempotent,
commutative and associative, (D,u) is a valid semilattice.

1 In this paper we consider two semilattices, the first one is on the characters of the
alphabet, (E,uE), and the second one is introduced by pattern structures, (D,u).

10

However, the set of all possible subsequences can be rather large. Thus, it is
more efficient and representable to keep a pattern d ∈ D as a set of all maximal
sequences d̃, d̃ = {s ∈ d | @s∗ ∈ d : s∗ ≥ s} . Below, every pattern is given only
by the set of maximal sequences. For example,

{
p2
}
u
{
p3
}

=
{
ss4, ss6

}
(see

Tables 1a and 1b), i.e.
{
ss4, ss6

}
is the set of maximal common subsequences be-

tween {p2} and {p3}, correspondingly
{
ss4, ss6

}
u
{
p1
}

=
{
ss3, ss7

}
. Moreover,

representing a pattern by the set of maximal sequences allows for an efficient
implementation of the intersection “u” (see Section 3.1 for more details).

The sequential pattern structure for the example given by Subsection 2.1
is (G, (D,u), δ), where G =

{
p1, p2, p3

}
, (D,u) is the semilattice of sequential

descriptions, and δ is the mapping associating an object in G to a description in
D shown in Table 1a. Figure 1a shows the resulting lattice of sequential pattern
concepts for this particular pattern structure (G, (D,u), δ).

2.4 Projections of Sequential Pattern Structures

Pattern structures can be hard to process due to the usually large number of
concepts in the concept lattice and the complexity of the involved descriptions
and the similarity operation. Moreover, a given pattern structure can produce
a lattice with a lot of patterns which are not interesting for an expert. Can we
save computational time by deleting some unnecessary patterns? Projections of
pattern structures “simplify” to some degree the computation and allow one
to work with a reduced description. In fact, projections can be considered as
constraints (or filters) on patterns respecting certain mathematical properties.
These mathematical properties guarantee that the projection of a lattice is a
lattice where projected concepts have certain correspondence to original ones.
We introduce projections on sequential patterns, adapting them from [7].

A projection ψ : D → D is an operator, which is monotone (x v y ⇒
ψ(x) v ψ(y)), contractive (ψ(x) v x) and idempotent (ψ(ψ(x)) = ψ(x)). A
projection preserves the semilattice operation u as follows. Under a projection
ψ, the pattern structure (G, (D,u), δ) becomes the projected pattern structure
ψ((G, (D,u), δ)) = (G, (Dψ,uψ), ψ ◦ δ), where Dψ = ψ(D) = {d ∈ D | ∃d∗ ∈
D : ψ(d∗) = d} and ∀x, y ∈ D,x uψ y := ψ(x u y). The concepts of a projected
pattern structure have a “similar” concept in the initial pattern structure [7].

One possible projection for sequential pattern structures comes from the
following observation. In many cases it can be more interesting to analyze quite
long common subsequences rather than small ones. For example, if we prefer
common subsequences of length > 2, then between p1 and p2 in Table 1a there
is only one maximal common subsequence, ss1 in Table 1b, while ss2 in Table 1b
is too short to be considered as a common subsequence. Such kind of projections
we call Minimal Length Projection (MLP) and depends on the parameter l,
the minimal allowed length of the sequences in a pattern. The projected pattern
concept lattice for MLP≥ 3 is shown in Figure 1b. In the experimentation section
we compare MLP projections with different value of the parameter. Projections
are very useful, as they reduce the computational costs in a meaningful manner.

11

3 Sequential Pattern Structure Evaluation

3.1 Implementation

Nearly all state-of-the-art FCA algorithms can be adapted to process pattern
structures. We adapted AddIntent algorithm [13], as the lattice structure is im-
portant for us to calculate stability (see the algorithm for calculating stability
in [14]). To compute the semilattice operation (u, v) between two sets of se-
quences S = {s1, ...sn} and T = {t1, ..., tm}, S u T is calculated according to
Section 2.3, i.e. maximal sequences among all maximal common subsequences
for any pair of si and tj . To find all common subsequences of two sequences,
the following observations is useful. If ss = 〈ss1; ...; ssl〉 is a subsequence of
s = 〈s1; ...; sn〉 with jsi = ks+i (Definition 3: ks is the index difference from which
ss is a subsequence of s) and a subsequence of t = 〈t1; ...; tm〉 with jti = kt + i
(likewise), then for any index i ∈ {1, 2, ..., l}, ssi vE (sjsi u tjti). Thus, to find
maximal common subsequences between s and t, we, first, align s and t in all
possible ways, and then we compute the resulting intersections and keep only
the maximal ones. Let us consider two possible alignments of s1 and s2:

s1 = 〈{a} ; {c, d} ; {b, a}; {d} 〉
s2 = 〈{c, d};{b, d} ; {a, d}〉
ssl = 〈 ∅ ; {d} 〉

s1 = 〈{a} ; {c, d};{b, a}; {d} 〉
s2 = 〈{c, d};{b, d};{a, d}〉
ssr = 〈{c, d}; {b} ; {d} 〉

The left intersection ssl is smaller than ssr and, thus, is not kept.

3.2 Experiments and Discussion

The experiments are carried out on an “Intel(R) Core(TM) i7-2600 CPU @
3.40GHz” computer with 8Gb of memory under the Ubuntu 12.04 operating
system. The algorithms are not parallelized and are coded in C++.

First, the public available dataset from UCI repository on anonymous web
data is used as a benchmark data set for scalability tests. This dataset contains
around 106 transactions, and each transaction is a sequence based on “simple”
alphabet, i.e. with no order on the elements. The overall time changes from
37279 seconds for the sequences of length MLP ≥ 5 upto 97042 seconds for the
sequences of length MLP ≥ 3. For more details see the web-page.2

Our use-case data set comes from a French healthcare system [15]. In the
experiment, 1000 patients are analyzed. The dataset describes a patient as a
sequence of hospitalizations without any timestamps. A hospitalization for a
patient is a tuple with the hospital name, the cause for the hospitalization and
the set of procedures the patient underwent. All the field of a hospitalization are
joined into one single set, which describes one element of a sequence.

Table 2 shows the final times and the lattice sizes for different projections.
The calculation time with projections changes from 3120 to 4510 seconds depend-
ing on the projection parameter. The lattice sizes for the different projections

2 http://www.loria.fr/~abuzmako/FCA4AI2013/experiment-uci.html

12

Projection No l = 2 l = 3 l = 4 l = 5 l = 6

Time(s) > 1.4 ∗ 105 4510 3878 3722 3435 3120
Lattice > 2.8 ∗ 106 554332 271166 189353 137912 100492

Table 2: The processing time and the lattice size for the PMT dataset.

Intent Extent

c1 〈{DChemotherapy} ∗ 8〉 284 (28%)
c2 〈{DDevice Adj., PArtery Catheter} ; {DChemotherapy} ∗ 12〉 74 (7%)
c3 〈{PChest Radiography} ∗ 2〉 189 (19%)

Table 3: Some interesting concepts of the PMT database

changes from 105 to 5 · 105. Notice that the ratio for the lattice size is of 5 while
the ratio for computation time is 1.5. Deletion of short sequences can dramati-
cally change the lattice size, since the shorter a sequence is, the more probable it
is a subsequence of a patient trajectory, but the computation of the semilattice
operation is easily processed with shorter sequences. The calculation without
projection takes a lot of time with relatively small lattice size (40 times more for
the runtime and 6 times more for the lattice size w.r.t the projection l = 2). The
reason for that is memory swapping to the hard disk. Thus, the best projection
for that dataset is l = 2 as its computation time is reasonable and it preserves
the most of the information among the other projections.

Table 3 shows some interesting concept intents and the sizes of the corre-
sponding extents. The concept are selected among the most stable ones [9]. The
concept c1 corresponds to 28% of the patients having at least 8 consequent hos-
pitalizations because of chemotherapy. Now we can estimate the minimal cost of
the overall procedures for a patient (we know the price of chemotherapy and we
know the expected number of procedures). Concept c2 covers 7% of the patients,
and its intent is more interesting: 12 hospitalizations for chemotherapy follow-
ing the hospitalization for adjustment of a chemotherapy device and an artery
catheter installation. Both concepts c1 and c2 can be found within any of the
considered projections (with l ∈ {2, 3, .., 6}), while the concept c3 can be found
only within the most specific projection (l = 2). The concept c3 covers 19% of
the patients and describes patients with at least two consequent hospitalizations
accompanied with a chest radiography. In this way, we have a kind of control of
the trajectory quality, because we could have an under-examination of a patient
during the first hospitalization.

Conclusion

In this paper, we present an approach for analyzing sequential datasets within
the framework of pattern structures, an extension of FCA dealing with complex
(non binary) data. Using pattern structures leads to the construction of a pattern
concept lattice, which does not require the setting of a support threshold, as
usually needed in sequential pattern mining. Another point worth to be noticed
is that the use of projections gives a lot of flexibility especially for mining and
interpreting special kinds of patterns. The framework is tested on a real-life

13

dataset recording patient trajectories in a healthcare system. Interesting patterns
are extracted and then interpreted, showing the feasibility and usefulness of
the approach. For the future work, it is important to more deeply investigate
projections, their potentialities w.r.t. the types of patterns.

Acknowledgements: this research received funding from the Basic Research
Program at the National Research University Higher School of Economics (Rus-
sia) and from the BioIntelligence project (France).

References

1. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.: FreeSpan:
frequent pattern-projected sequential pattern mining. In: Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and data mining.
(2000) 355–359

2. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.:
PrefixSpan Mining Sequential Patterns Efficiently by Prefix Projected Pattern
Growth. In: 17th International Conference on Data Engineering. (2001) 215–226

3. Yan, X., Han, J., Afshar, R.: CloSpan: Mining Closed Sequential Patterns in Large
Databases. In: In SDM. (2003) 166–177

4. Ding, B., Lo, D., Han, J., Khoo, S.C.: Efficient Mining of Closed Repetitive Gapped
Subsequences from a Sequence Database. In: 2009 IEEE 25th International Con-
ference on Data Engineering, IEEE (March 2009) 1024–1035

5. Räıssi, C., Calders, T., Poncelet, P.: Mining conjunctive sequential patterns. Data
Min. Knowl. Discov. 17(1) (2008) 77–93

6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. 1st
edn. Springer, Secaucus, NJ, USA (1997)

7. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In Delu-
gach, H., Stumme, G., eds.: Conceptual Structures: Broadening the Base SE - 10.
Volume 2120 of LNCS. Springer Berlin Heidelberg (2001) 129–142

8. Klimushkin, M., Obiedkov, S.A., Roth, C.: Approaches to the Selection of Relevant
Concepts in the Case of Noisy Data. In: Proceedings of the 8th international
conference on Formal Concept Analysis. ICFCA’10, Springer (2010) 255–266

9. Kuznetsov, S.O.: On stability of a formal concept. Annals of Mathematics and
Artificial Intelligence 49(1-4) (2007) 101–115

10. Casas-Garriga, G.: Summarizing Sequential Data with Closed Partial Orders. In:
SDM. (2005)

11. Plantevit, M., Laurent, A., Laurent, D., Teisseire, M., Choong, Y.W.: Mining mul-
tidimensional and multilevel sequential patterns. ACM Transactions on Knowledge
Discovery from Data 4(1) (January 2010) 1–37

12. Kuznetsov, S.: Learning of Simple Conceptual Graphs from Positive and Negative
Examples. Volume 1704 of LNCS. Springer (1999) 384–391

13. Merwe, D.V.D., Obiedkov, S., Kourie, D.: AddIntent: A new incremental algorithm
for constructing concept lattices. In Goos, G., Hartmanis, J., Leeuwen, J., Eklund,
P., eds.: Concept Lattices. Volume 2961. Springer (2004) 372–385

14. Roth, C., Obiedkov, S., Kourie, D.G.: On succinct representation of knowledge
community taxonomies with formal concept analysis A Formal Concept Analy-
sis Approach in Applied Epistemology. International Journal of Foundations of
Computer Science 19(02) (April 2008) 383–404

15. Fetter, R.B., Shin, Y., Freeman, J.L., Averill, R.F., Thompson, J.D.: Case mix
definition by diagnosis-related groups. Med Care 18(2) (February 1980) 1–53

14

Using pattern structures to support information
retrieval with Formal Concept Analysis

Vı́ctor Codocedo1?, Ioanna Lykourentzou1,2??, Hernán Astudillo3, and Amedeo
Napoli1

1 LORIA - CNRS - INRIA - Univesité de Lorraine, BP 239, 54506 Vandœuvre-les-Nancy.
victor.codocedo@loria.fr, amedeo.napoli@loria.fr,

2 Centre de Recherche Public Henri Tudor - 29, avenue John F. Kennedy L-1855
Luxembourg-Kirchberg, Luxembourg

ioanna.lykourentzou@tudor.lu
3 Universidad Técnica Federico Santa Marı́a - Avenida España 1680 - Valparaı́so, Chile

hernan@inf.utfsm.cl

Abstract. In this paper we introduce a novel approach to information retrieval
(IR) based on Formal Concept Analysis (FCA). The use of concept lattices to
support the task of document retrieval in IR has proven effective since they allow
querying in the space of terms modelled by concept intents and navigation in the
space of documents modelled by concept extents. However, current approaches
use binary representations to illustrate the relations between documents and terms
(“document D contains term T”) and disregard useful information present in doc-
ument corpora (“document D contains X references to term T”). We propose us-
ing pattern structures, an extension of FCA on multi-valued and numerical data,
to address the above. Given a set of weighted document-term relations, a concept
lattice based on pattern structures is built and explored to find documents satisfy-
ing a given user query. We present the meaning and capabilities of this approach,
as well as results of its application over a classic IR document corpus.

Keywords: Formal Concept Analysis, Interval Pattern Mining, Information Retrieval

1 Introduction

Information retrieval (IR), is a problem of lasting interest for the research community.
Among the tasks comprising the IR domain, document retrieval (i.e. the search and
ranking of documents that are relevant to an original user query from a given document
corpus) is one of the most popular in the field given its importance in everyday routines.
In the wide spectrum of techniques applied to support document retrieval, formal con-
cept analysis (FCA) has gained interest in the last years [3–6, 16] because of its robust
framework and the qualities of a concept lattice.

Formal concept analysis (FCA) is a mathematical formalism used for data analysis
and classification, which relies on the dualistic understanding of concepts as consisting
? Part of the Quaero Programme, funded by OSEO, French State agency for innovation.

?? Supported by the National Research Fund, Luxembourg, and cofunded under the Marie Curie
Actions of the European Commission (FP7-COFUND).

15

of an extent (the objects that belong to the concept) and an intent (the attributes that
those objects share) organized in a lattice structure called a concept lattice [7]. We
refer to FCA-based information retrieval as CL4IR which stands for“concept lattices
for information retrieval”.

In a typical CL4IR approach, a binary table of documents and terms is created
and then, using FCA algorithms, the respective concept lattice is created. This lattice
contains several formal concepts, each defined by a set of documents (extent) and the
set of terms that they share (intent). Thus, the lattice provides a multiple hierarchical
classification of documents and terms which can be navigated and searched as an index,
to retrieve concepts that are “close” or “similar” to the original query concept. In this
way a CL4IR system exploits the connections of concepts within the lattice to find
relevant documents for a given query and takes advantage of the lattice structure to
enrich the answer in different ways: by navigating the lattice to look for approximate
answers through generalizations and specifications of the original query concept’s intent
[2, 14], by enriching the term vocabulary with a thesaurus [5] or by directly integrating
external knowledge sources [16]. Nevertheless, current CL4IR systems are restricted
by the binary nature of their data (a document can either contain a given term or not).
Consequently, they can work only with Boolean-like queries, which is an important
limitation w.r.t. other IR approaches such as vector-space ranking methods [13] that
allow partial-matching documents to be considered as possible answers.

In this article we present a novel CL4IR approach, which deals with numerical
datasets, i.e. document-term relations, where a document is annotated by a term with a
certain weight. This approach provides CL4IR systems with an extended query space,
on which vector-space ranking methods can be adapted and applied. In parallel, this
approach retains the main advantage of using lattices as the document search index,
which is the provision and exploration potential of the complete query space. Our ap-
proach is based on the pattern structures framework, an extension of FCA to deal with
complex data [7]. Given a numerical table representing weighted associations between
documents and terms, we apply pattern structures to build the extended query space,
while we also introduce steps for reducing and simplifying the document search within
the constructed query space. We illustrate our approach through running example on
a classical IR dataset and by comparing our results, in terms of precision and recall,
to those reported in the literature. Furthermore we provide a discussion on the mean-
ing and capabilities of the proposed approach. The remainder of the paper is organized
as follows. Section 2 provides an introduction to the use of formal concept analysis
for document retrieval. Section 3 describes the pattern structure framework and details
the proposed CL4IR approach which can be applied on numerical datasets. Section 4
presents the experiments. Finally, Section 5 concludes the paper.

2 Concept Lattices for Information Retrieval

The setting of a typical concept lattice for information retrieval (CL4IR) application
is given by a formal context K = (D,T, I) made of a set of documents D, set of
terms T and an incidence relation I = {(di, tj)} indicating that document di contains

16

term tj . Table 1 illustrates a document-term formal context created from a corpus of 9
documents and 12 terms.

hu
m

an
in

te
rf

ac
e

co
m

pu
te

r
us

er
sy

st
em

re
sp

on
se

tim
e

E
PS

su
rv

ey
tr

ee
gr

ap
h

m
in

or

d1 x x x
d2 x x x x x x
d3 x x x x
d4 x x x
d5 x x x
d6 x
d7 x x
d8 x x x
d9 x x x
q * x x

* Grey row represents the query.

Table 1: A term-document formal context including the query q.

Given a user query q = {t1, t2...t|q|} , the document retrieval task consists in return-
ing a set of documents ordered by “relevance” w.r.t. the query q. In CL4IR systems a
query can be represented as a virtual document containing the set of terms {t1, t2...t|q|}.
Then, the query is inserted in the formal context as another object and the incidence re-
lation set I is updated to include the relations of the virtual query-document and its
terms. The formal context becomes Kq = (D + {q}, T, I + {(q, ti)i..|q|}).

The standard procedure to find “relevant” documents within the concept lattice con-
sists in identifying the query concept (which is defined as the object concept of the
virtual object q and denoted by γ(q) = ((q′)′, q′)) and concepts related to the query
concept (for example, its superconcepts) which can provide further results. We refer to
the later concepts as “answer concepts”. For the formal context in Table 1, consider the
query q with terms “graph” and “tree” (grey row). Figure 1 shows the concept lattice
derived from this formal context (including the query). The query concept corresponds
to concept 17 and contains in its extent documents d7 and d8 which satisfy the query
and can be retrieved to the user. The superconcepts of the query concept (concepts 7
and 8) contain documents d6 and d9 which can also be retrieved. Different relevance
measures can be used to rank the retrieved documents. For example, the topological
distance within the lattice between the query concept and the “answer concepts” (i.e.
concepts partially satisfying the query) can be calculated and in this case documents d7
and d8 are at distance 0 (more relevant), while d6 and d9 are at distance 1 (less rele-
vant). Other such measures include semantic distance, extent intersection, and Jaccard
similarity [2, 15, 5].

More generally, the concept lattice defines a query space where each formal concept
C can be considered as a conjunctive Boolean query (i.e. a query where the constraint

17

Fig. 1: Concept lattice in reduced notation derived from a document-term formal
context including the query.

is given by the conjunction of the attributes in the intent of C) and a combination of
formal concepts provides disjunction and negation (e.g. The union of concepts 7 and 8
in Figure 1 satisfies the disjunctive query “graph” or “tree”). Unfortunately, the binary
case is the “ideal world”. In most real-world datasets the relation between a document
and a term is built w.r.t. a measure such as frequency, distance or weight involving a
range of numerical values [13].

A document corpus can be defined as a term-document matrix A = [aij], where
terms ti ∈ T are in rows, documents dj ∈ D in columns and each cell aij of the matrix
represents the “value” of the term ti in the document dj , given by a function val(dj , ti)
(weight, frequency, etc.). In order to work with this kind of datasets, a CL4IR system
can resort to interordinal scaling [8] by simply assigning an incidence relation when a
term in a document has a value within a given range, i.e. I = {(d, t)|val(d, t) > 0}).
However, interordinal scaling could greatly increase the complexity for IR tasks [12] as
it induces redundancy as shown in [11]. To the best of the authors’ knowledge, a CL4IR
system directly dealing with a weighted term-document dataset is not yet reported in the
FCA nor in IR literature. In the following, we present a method and an implementation
of a CL4IR approach dealing with numerical datasets.

3 CL4IR with many-valued datasets

3.1 Pattern structure framework

Here, we introduce the pattern structure framework firstly described in [7].
A pattern structure K = (G, (P,u), δ) is a generalization of a formal context. In K,

G is a set of objects, (P,u) is a semi-lattice of object descriptions and δ : G → P is a

18

mapping associating a description to an object. The description of an object g ∈ G is a
vector of intervals v = 〈[li, ri]〉i∈{1..|M |}, where v ∈ P , li, ri ∈ R and li ≤ ri .

In (P,u) the similarity operator u applied to va = 〈[l1i , r1i]〉 and vb = 〈[l2i , r2i]〉
yields the convex hull va u vb = 〈[min(l1i , l2i),max(r1i , r2i)]〉 where i ∈ {1..|M |}. The
associated subsumption relation is defined as va u vb = va ⇐⇒ va v vb.

A Galois connection between ℘(G) (powerset of G) and (P,u) is defined as fol-
lows:

X� =
d
g∈X δ(g) ; v� = {g ∈ G|v v δ(g)}

where X� represents the common description to all objects in X while v� represents
the set of objects respecting the description v. A pair (X, v) such as X� = v and
v� = X is called a interval pattern concept (ip-concept) with extent X and pattern
intent v. Ip-concepts can be ordered in an interval pattern concept lattice (ip-concept
lattice). Algorithms for computing ip-concepts from an interval pattern structure are
proposed in [11, 7].

3.2 CL4IR based on pattern structures

A document corpus or a term-document matrix, as described at the end of Section 2, can
naturally be represented as a many-valued context [8] K = (D,T,W, I), where W =
{val(dj , ti)}∀dj∈D,ti∈T and I = (dj , ti, wk); f(dj , ti) = wk, wk ∈W . Table 2 shows
an example containing 9 documents (white rows) and 12 terms. The value in a cell
represents the “relative frequency” of a term in a document, i.e. the ratio between the
amount of times a term appears in a document and the total amount of terms occurrences
in the document. Like in the binary case, a query q = {t1, t2, ..t|q|} is considered as
a virtual document and included in the many-valued context which becomes Kq =
(D + {q}, T,W, I + {val(q, ti)}∀ti∈q). The cells of the query contain also a “relative
frequency” value. The query q = {“graph”, “tree”} is illustrated in the grey row in
Table 2 (e.g. val(q, graph) = 1/2 = 0.5).

To deal withKq , we define the pattern structure as (D+{q}, (P,u), δ) where inter-
val patterns in P contain the interval-vector representation of documents in |T | dimen-
sions (one for each term). The mapping δ(d) = 〈[val(d, ti), val(d, ti)]i∈[1..|T |]〉 assigns
an interval pattern representation to a document (or the virtual query-document) con-
sisting of a zero-length interval for each term existing in T at the value of the term in the
document (e.g. in Table 2, δ(d1) = 〈[0.33, 0.33][0.33, 0.33][0.33, 0.33][0, 0] . . . [0, 0]〉,
where [0, 0] is represented by [−]). The similarity operator u applied to two interval
patterns returns the convex hull between their document representations. From the pat-
tern structure we construct the ip-concept lattice representing the query space which
will be used to retrieve documents in a similar way as binary approaches.

The query concept is still considered as the object concept of q. However the se-
mantic of the query space changes. While in the binary case the query space represents
a pool of Boolean query possibilities, here the query space can be considered as a vec-
tor space where the query is grouped with documents having similar representations.
For example, consider the first three columns in Table 3 where each row represents an
ip-concept. Concept 1 is the query concept which in its extent includes documents d7

19

and its interval pattern (intent) only includes zero-length intervals in all 12 dimensions,
making the description of the query identical to the description of d7. Concept 2 is a
superconcept of 1, whose extent contains d7 and d8. This time, there are only 9 zero-
length intervals in all 12 dimensions. Concept 2 is less similar to the query than concept
1 w.r.t 3 dimensions. Following with concept 3, we can see that the later is less similar
to the query than concept 1 w.r.t. 4 dimensions. We get in this way a “natural” ranking
of the concepts.

In order to rank ip-concepts we rely on the notion of maximal distance within an
interval pattern. For illustrating this notion, we will use the geometrical interpretation
of patterns already introduced in [11]. Let us consider the 2-dimensional case with two
ip-concepts in Figure 2, namely Z1 = ({q, A,B,C}, 〈[2, 7][2, 7]〉) (clear rectangle)
and Z2 = ({q, A,B,C,D}, 〈[1, 7][1, 7]〉) (dark rectangle). For ranking an ip-concept
Zi w.r.t. the query, we will consider the “maximal distance” possible between any two
objects in the extent of Zi, which in the case of Z1 is between objects q and C and for
Z2 is between q and D. Thus, this distance is actually the Euclidean distance between
the edges of the interval vector. Table 3 presents the retrieved ip-concepts for the query
in Table 2 ranked by maximal distance in column 4.

hu
m

an

in
te

rf
ac

e

co
m

pu
te

r

us
er

sy
st

em

re
sp

on
se

tim
e

E
PS

su
rv

ey

tr
ee

gr
ap

h

m
in

or

d1 0.33 0.33 0.33 0 0 0 0 0 0 0 0 0
d2 0 0 0.16 0.16 0.16 0.16 0.16 0 0.16 0 0 0
d3 0 0.25 0 0.25 0.25 0 0 0.25 0 0 0 0
d4 0.25 0 0 0 0.5 0 0 0.25 0 0 0 0
d5 0 0 0 0.33 0 0.33 0.33 0 0 0 0 0
d6 0 0 0 0 0 0 0 0 0 1 0 0
d7 0 0 0 0 0 0 0 0 0 0.5 0.5 0
d8 0 0 0 0 0 0 0 0 0 0.33 0.33 0.33
d9 0 0 0 0 0 0 0 0 0.33 0 0.33 0.33
q a 0 0 0 0 0 0 0 0 0 0.5 0.5 0

Table 2: Many-valued document term
context (including query).

a Grey row represents the query concept.

Fig. 2: Two interval patterns in
the

query space.

Id Extent Pattern intent max dist

1 q, d7
* 〈[−][−][−][−][−][−][−][−][−][0.5, 0.5][0.5, 0.5][−]〉 0

2 q, d7, d8 〈[−][−][−][−][−][−][−][−][−][0.33, 0.5][0.33, 0.5][0, 0.33]〉 0.408
3 q, d7, d8, d9 〈[−][−][−][−][−][−][−][−][0, 0.33][0, 0.5][0.33, 0.5][0, 0.33]〉 0.704
4 q, d6, d7 〈[−][−][−][−][−][−][−][−][−][0.5, 1][0, 0.5][−]〉 0.707
5 q, d2, d7 〈[−][−][0, 0.16][0, 0.16][0, 0.16][0, 0.16][0, 0.16][−][0, 0.16][0, 0.5][0, 0.5][−]〉 0.808
6 q, d3, d7 〈[−][0, 0.25][−][0, 0.25][0, 0.25][−][−][0, 0.25][−][0, 0.5][0, 0.5][−]〉 0.866
7 q, d1, d7 〈[0, 0.33][0, 0.33][0, 0.33][−][−][−][−][−][−][0, 0.5][0, 0.5][−]〉 0.909
8 q, d5, d7 〈[−][−][−][0, 0.33][−][0, 0.33][0, 0.33][−][−][0, 0.5][0, 0.5][−]〉 0.909
9 q, d4, d7 〈[0, 0.25][−][−][−][0, 0.5][−][−][0, 0.25][−][0, 0.5][0, 0.5][−]〉 0.935

* Grey row represents the query concept.

Table 3: Extents and Intents of concepts in Figure 2 presenting the cosine similarity
between its edges ([−] represents the zero-length interval [0, 0]).

20

3.3 Dealing with real-world datasets

Calculating a concept lattice is an expensive task which can yield a large amount of
concepts making it prohibitive for large document corpora. The scenario is worst for
pattern structures since for every concept the size of the intent is set to the whole set of
attributes adding even more complexity. Calculating the whole query space of a term-
document matrix is not advisable, since for a given query only a small part of the whole
space is required. In order to avoid a sizeable query space in each step of the retrieval
process, progressive actions to filter data are performed. In the following, we describe
the retrieval process and each action.

1. Constructing the pattern structure: The process starts with the input of a query
q = {t1, t2, ..., t|q|} and ends after the pattern structure containing the virtual query-
document is created. We include in the set of documents only those which contain at
least a given number of the terms provided in the query, which can be performed at a
negligible cost by firstly storing documents and terms in a relational database. The set
of terms only include those provided in the query. The minimum number of terms for a
document is left as a parameter of the process.

2. Constructing the ip-concept lattice: This step receives the pattern structure in
order to create an ip-concept lattice. A standard FCA algorithm, namely Ganter’s al-
gorithm [8] is used for this purpose. However the algorithm has been adapted for the
present task.

Many ip-concepts found in the interval pattern lattice are not useful for document
retrieval purposes. For example, the framework creates ip-concepts with documents
which do not share terms (e.g. consider the interval 〈[0, 1][0, 1][0, 1]〉 created from the
documents sharing no terms with orthogonal representations v1 = 〈[0, 0][1, 1][1, 1]〉
and v2 = 〈[1, 1][0, 0][0, 0]〉). We denominate these concepts non-informational.

In order to reduce the amount of non-informational concepts, we modified the u
operator in the set of ordered patterns (P,u) such as [l, r]u [0, 0] = [∗] and [l, r]u [∗] =
[∗];∀l, r ∈ R. The interval [∗] has been used before to indicate absence of similarity
[10]. Let Zi = (Xi, vi) be an ip-concept, then ρ(Zi) represents the number of intervals
different from [∗] in vi. We call ρ(Zi) the dimensionality of Zi. For a second ip-concept
Zj = (Xj , vj) is easy to show that (Zi ≤ Zj ⇐⇒ vj v vi) =⇒ ρ(Zi) ≤ ρ(Zj).
We use a threshold of minimal dimensionality (min dim) to reduce the amount of ip-
concepts calculated. Consider this analogous to the use of a minimal support in the
construction of an iceberg lattice [18].

4 Experiments and Discussion

To test the validity of the proposed approach, we applied it on a popular IR dataset
which is openly available. We refer to this implementation as “ip-CL4IR”. The CISI
dataset4 consists of 1460 documents and 35 queries, each one containing a set of valid
answers. Documents contain text in natural language and queries are given as a set of
terms connected by Boolean operators. In our experiments, we converted documents to
collections of weighted terms and stored them in a relational database. The weighting

4 http://ftp.cs.cornell.edu/pub/smart/cisi/

21

measure used was term frequency-inverse document frequency (tf.idf) [13]. Boolean
operators in the query were ignored since they do not provide meaning in the vector-
space model (except in the extended Boolean model case [17] not considered in this
work). The virtual query-document was constructed using the inverse document fre-
quencies calculated from the dataset for each of its terms.

After receiving a query, ip-CL4IR consults the database and extracts all documents
that contain at least 2 terms of the query (as described in Section 3.3, this value is a pa-
rameter of ip-CL4IR). The ip-concept lattice is computed using a minimal dimension-
ality ofmin dim = 2, to keep consistency w.r.t. the restriction given for the creation of
the pattern structure. The query concept is searched in the lattice and its superconcepts
are retrieved and ranked using the Euclidean distance between the boundaries of their
interval patterns. Cosine distance (instead of Euclidean distance) was also calculated
showing better results. Table 4 shows the results for 11-point precision of fixed recall
and 6 measures of precision for the top 5,10 and 20 ranked documents retrieved. Results
on an implementation based on concept lattice-based ranking (CLR) [2] using the same
dataset and a simple binnarization of the relation document-term is reported along with
our results for comparison purposes.

ip-CL4IR CLR EM

11-point IAPa 0.232 0.191 0.174
MAPb 0.202 0.163 0.145
Precision@5 0.257 0.206 0.285
Precision@10 0.251 0.174 0.257
Precision@20 0.245 0.174 0.207
Recall@5 0.032 0.049 0.057
Recall@10 0.060 0.073 0.079
Recall@20 0.146 0.112 0.123

Table 4: CISI dataset. Results
for 35 queries.

a Interpolated average precision
b Mean average precision

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Pr
ec

is
io

n

Recall

Interpolated precision @ 11 points

EM
CLR
ip-CL4IR

Fig. 3: Interpolated precision in 11 points of recall

Table 4 reports the results in 8 measures for ip-CL4IR, a reported CL4IR system
called concept lattice-based ranking (CLR) [2] and a naive approach called exact match-
ing (EM) where documents are ranked according to how many terms have in common
w.r.t. the query. The second row contains the values of the interpolated average precision
(IAP) over 11-points of recall illustrated on Figure 3. Interpolated precision in a given
recall point ri in Figure 3 indicates the best precision value in the interval [ri, ri+1[.
From Figure 3, the interpolated precision in the recall point 0 for ip-CL4IR is the best
precision obtained in the recall interval [0, 1[equal to 0.51. The third row contains the
values of the mean average precision (MAP) calculated over the precision values for
each valid document found in the ranked documents retrieved by a system for each
query. For example, given query if the first valid document is found in the third position
of the ranking it has a precision value of 0.3. If the second is found in the fifth position
its precision is 0.2 and the MAP is 0.25. IAP and MAP are standard information re-
trieval measures [13] to evaluate ranked results from a retrieval system. The remaining

22

rows present values of precision and recall in the first 5 (@5), 10 (@10) and 20 (@20)
ranked documents from each system. Boldface entries indicate the best values for the
three systems.

Values in Table 4 show a better performance of ip-CL4IR on 4 of the 8 measures
while EM is better in the remaining 4, namely precision and recall in the first 5 and
10 ranked documents. This indicates that EM is actually better to recognize documents
very close to the query, but for documents with less elements in common with the query,
EM is not very precise. This can be better appreciated in Figure 3 where the interpolated
precision values of ip-CL4IR quickly overcome those of EM which is only better in 1
of the 11 recall points. This fact is also supported by the significant difference in the
values of IAP and MAP between ip-CL4IR and EM. For the 35 queries in the dataset,
our approach took 42.23 seconds (1.2 seconds per query) to execute while for CLR
took 1550.333 (44.29 seconds per query) showing an impressive enhancement in the
computational time required to retrieve documents, a key issue in document retrieval.
Both these times include lattice construction. Using better measures which consider the
correlation among terms, or including external knowledge sources like term taxonomies
may improve greatly the quality of the answers provided by our approach. These issues
are currently planned as future work. These experiments were performed in an Intel
Xeon machine running at 2.27 GHz with 62 GB of RAM memory.

There are many perspectives for our approach, however the most important is the
full exploitation of the ip-lattice structure to improve the quality in the answers. While
our principal goal in this article is to describe a general process to directly support
numeric term-document datasets in a concept lattice-based information retrieval system,
we argue that different IR tasks (some already supported on CL4IR systems) can be also
supported on ip-CL4IR for example, document clustering [1], user feedback inclusion
[6] and recommendation [9].

5 Conclusions

In this article we introduce a CL4IR approach which is able to deal directly with numer-
ical datasets through the use of the pattern structure framework (ip-CL4IR). We provide
a method and a process to construct an interval pattern concept lattice (ip-concept lat-
tice) which can be used as a document index. We present the idea of an ip-concept
lattice as a query space which can be navigated in order to find relevant documents. We
also provide means to rank these documents using vector-based distances. The feasi-
bility of our approach is validated through its application on a popular IR dataset for
which we present precision and recall values contrasted to those reported in the lit-
erature showing a better performance in the overall list of ranked documents and an
impressive enhancement in the time needed to answer a single query.

The perspectives for our approach are numerous, ranging from the improvement of
its answers, its application on different real-world datasets, but most importantly, the
full exploitation of the lattice structure to support different IR tasks.

23

References

1. C. Carpineto, S. Osiński, G. Romano, and D. Weiss. A survey of Web clustering engines.
ACM Computing Surveys, 41(3):1–38, July 2009.

2. C. Carpineto and G. Romano. Order theoretical ranking. Journal of the American Society
for Information Science, 51(7):587–601, 2000.

3. C. Carpineto and G. Romano. Exploiting the potential of concept lattices for information
retrieval with CREDO. Journal of Universal Computer Science, 10:985 – 1013, 2004.

4. C. Carpineto and G. Romano. Using Concept Lattices for Text Retrieval and Mining. Formal
Concept Analysis, pages 161–179, Jan. 2005.

5. V. Codocedo, I. Lykourentzou, and A. Napoli. Semantic querying of data guided by Formal
Concept Analysis. In Formal Concept Analysis for Artificial Intelligence Workshop at ECAI
2012, 2012.

6. S. Ferré. Camelis: a logical information system to organise and browse a collection of doc-
uments. International Journal of General Systems, 38(4):379–403, 2009.

7. B. Ganter and S. O. Kuznetsov. Pattern Structures and their projections. Conceptual Struc-
tures: Broadening the Base, 2001.

8. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations. Dec. 1999.
9. D. I. Ignatov and S. O. Kuznetsov. Concept-based Recommendations for Internet Advertise-

ment. CoRR, abs/0906.4, 2009.
10. M. Kaytoue, Z. Assaghir, A. Napoli, and S. O. Kuznetsov. Embedding tolerance relations

in formal concept analysis. In Proceedings of the 19th ACM international conference on
Information and knowledge management - CIKM ’10, page 1689, New York, New York,
USA, Oct. 2010. ACM Press.

11. M. Kaytoue, S. O. Kuznetsov, and A. Napoli. Revisiting numerical pattern mining with
formal concept analysis. Proceedings of the Twenty-Second international joint conference
on Artificial Intelligence - Volume Volume Two, pages 1342–1347, Nov. 2011.

12. S. O. Kuznetsov. Pattern Structures for Analyzing Complex Data. In Proceedings of the
12th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Com-
puting, volume 5908 of Lecture Notes in Computer Science, pages 33–44. Springer Berlin
Heidelberg, Dec. 2009.

13. C. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge
University Press (Online edition), 1 edition, 2009.

14. N. Messai, M.-D. Devignes, A. Napoli, and M. Smaı̈l-Tabbone. Querying a bioinformatic
data sources registry with concept lattices. In Proceedings of the 13th international confer-
ence on Conceptual Structures: common Semantics for Sharing Knowledge, volume 3596 of
Lecture Notes in Computer Science, July 2005.

15. N. Messai, M.-D. Devignes, A. Napoli, and M. Smaı̈l-Tabbone. Using Domain Knowledge
to Guide Lattice-based Complex Data Exploration. In Proceedings of the 2010 conference
on ECAI 2010: 19th European Conference on Artificial Intelligence, pages 847–852, 2010.

16. U. Priss. Lattice-based Information Retrieval. Knowledge Organization, 27:132 – 142, 2000.
17. G. Salton, E. A. Fox, and H. Wu. Extended Boolean information retrieval. Communications

of the ACM, 26(11):1022–1036, Nov. 1983.
18. G. Stumme, R. Taouil, Y. Bastide, and L. Lakhal. Conceptual clustering with iceberg con-

cept lattices. In Proc. GI-Fachgruppentreffen Maschinelles Lernen (FGML’01), Universität
Dortmund 763, October 2001.

24

FCA-Based Concept Detection in
a RosettaNet PIP Ontology

Jamel Eddine Jridi and Guy Lapalme

DIRO, Université de Montréal, Canada,
{jridijam, lapalme}@iro.umontreal.ca

Abstract. This paper presents an FCA-based methodology for concept
detection in a flat ontology. We apply this approach to an automatically
generated ontology for a RosettaNet Partner Interface Process (PIP)
which does not take advantage of some important OWL semantic rela-
tions like subClassOf. The goal of our approach is to regroup ontology
classes sharing a set of properties (Data and Object Property) in order
to improve the quality, readability and the inheritance richness of a flat
ontology.

Keywords: Formal Concept Analysis, Ontology, RosettaNet PIP On-
tology, Inheritance Richness.

1 Introduction

Ontologies are widely used in knowledge management, information integration,
natural language processing, information retrieval, business-to-business (B2B),
e-commerce, etc [4].

Research is now envisioning the adoption of semantic web technologies in the
business domain. Lytras et al. [8] analyse the practical requirements in terms of
interoperability or knowledge representation. The use of ontologies is not only
for communication between different applications but also to provide reasoning
support to infer, integrate information and to extract meaning.

After an ontology is constructed, it is important to assess the quality of
an ontology to detect design defects and to automatically recognize parts that
cause problems and might need more work. In this paper, we try to improve the
inheritance richness of an OWL ontology based on the balance between depth
and height of the inheritance tree which, according to Tatir et al. [13], play a
role in a quality assessment. In Software Engineering, Sheldon et al. [10] claim
that when the hierarchy in the inheritance tree is shallow, better will be the
maintainability, readability and understanding.

In this paper, we propose a method to verify, regroup concepts sharing prop-
erties to improve the quality and readability of an automatically generated on-
tology. We use Formal Concept Analysis in the context of concept detection in
OWL ontologies using OWL artifacts (Class, DataProperty and ObjectProperty).

25

The remainder of this paper is structured as follows. Section 2 states the
problem. In Section 3, we describe the principles of the Formal Concept Anal-
ysis algorithm underlying our approach and the adaptation of its principles for
the detection of concepts in a RosettaNet Ontology. Section 4 presents and dis-
cusses the validation results. A summary of the related work in ontology-based
attempts of B2B standards and the use of Formal Concept Analysis in Ontolog-
ical Engineering is given in Section 5. We conclude and suggest future research
directions in Section 6.

2 Background and Problem Statement

In this section, we describe the problem of concepts detection and the importance
of the inheritance tree to represent a domain knowledge. We start by defining
important notions. Then, we detail the specific problems that are addressed by
our approach.

2.1 Basic notions

Ontology in Semantic Web technology provides a shared and common vocab-
ulary for a domain of interest and a specification of the meaning of its terms [3].
It allows users to organize information into a hierarchy of concepts, to describe
relationships between them, and to make semantics machine processable, not
just readable by a human.

RosettaNet B2B Standard is a consortium which provides a global forum
for suppliers, customers, and competitors to do business and collaboration in
an efficient and profitable manner. To manage business activities, RosettaNet
formalizes Partner Interface Processes (PIP) with either Data Type Definition
(DTD) format or XML Schema, and define business processes between trading
partners. PIPs are organized into eight groups of core business processes called
clusters, themselves further grouped into segments. Each segment includes sev-
eral PIPs. In section 3, we will use the PIP3A4 as running example of our
methodology. But we managed to apply the same technique on all published
PIPs.

The RosettaNet architecture contains a Business Dictionary to define the
properties for basic business activities and Technical Dictionaries to provide
properties for products [14]. The RosettaNet Implementation Framework (RNIF)
describes the packaging, routing, and transport of all PIP messages and business
signals.

2.2 Problem Statement

There are few works to measure quality of an ontology using metrics. But, to
our knowledge, no work has yet proposed methods to verify, maintain concept

26

hierarchy representation and improve the quality and readability of an ontology
from inheritance point of view using OWL artifacts (Class, DataProperty and
ObjectProperty).

Tatir et al. [13] and Sicilia et al. [11] propose an Inheritance Richness metric
defined as the average number of subclasses per class and represent the dis-
tribution of information across different levels of the ontology inheritance tree.
Values close to zero indicate horizontal ontologies representing perhaps more
general knowledge while large values represent vertical ontologies describing de-
tailed knowledge of a domain.

In our case study, we have chosen an ontology describing a detailed domain
knowledge. Some approaches are proposed to ontologize some of the famous B2B
standards like RosettaNet1 and ebXML2.

In this paper, we apply our methodology on a RosettaNet Ontology described
in our paper published in the 15th International Conference on Enterprise Infor-
mation Systems [5]. RosettaNet focuses on a supply chain domain and defines
processes and business documents in detail. This automatically generated on-
tology, described in Section 4, has some drawbacks because it does not take
advantage of some important OWL semantic relations like subClassOf. It is
quite flat and does not describe in details the supply chain knowledge provided
by RosettaNet, although it deals with a specific domain having several concepts
with a common semantics. Although approaches have been previously proposed
to ontologize a few B2B standards like RosettaNet and ebXML [2,6,7], we ar-
gue in [5] that our methodology is the first to deal with the complete set of
RosettaNet PIPs.

During the transformation process, it is difficult to automatically detect el-
ements with a common semantics which are described in separate OWL files.
But, we noticed that many of those share some properties and lexemes in their
compounded names. For this reason, we use FCA as a classification approach to
detect concepts by regrouping classes in an ontology to improve its quality and
readability.

3 FCA-Based Concept Detection Approach

The goal of our approach is to regroup ontology classes sharing a set of properties
(Data and Object Property) and then maintain the hierarchy representations.

The core of our system has three main parts: Ontology Processing, FCA Sys-
tem and Regrouping concepts. The Ontology Processing step builds a cross-table
from ontology artifacts (Class, Data Property and Object Property) without
dealing with the property type or occurrence restrictions. This table describes
relationships between objects (ontology classes are represented by rows) and
attributes (Data and Object properties correspond to columns).

Taking the example in Table 1, o1..k represents ontology classes with k is the
number of classes in the ontology. p1..m represents the set of Data and Object
1 http://www.rosettanet.org/
2 http://www.ebxml.org/

27

Properties with m being the total number of data and object properties. Element
<i,j> of the table is marked with “x” if the domain of property pj is class oi.
We use FCA to create a hierarchy of concepts displayed as an inheritance tree.
According to [10], maintainability, readability and understanding of a hierarchy
are better when it is shallow. For this reason, we consider only two levels in the
hierarchy of the concept lattice.

Table 1. Example of cross-table.

R p1 p2 p3 pm
o1 x x x x
o2 x x x
...
ok x x x

6+7=13 �

6+13=19 �

7 �

Fig. 1. An example of a concept lattice describing RosettaNet PIP3A4 Purchase
Order Request. The process to build this concept lattice starts by extracting on-
tology artifacts (Class, Data Property and Object Property) from the OWL File of
PIP3A4 which are added to a cross-table as CSV file. This file serves as input to the
FCA system to build this concept lattice.

28

The concept lattice in Figure 1, which is the output of our FCA applica-
tion, describes the RosettaNet PIP3A4 (Purchase Order Request). Intermediate
concepts (of the form Concept_NN) were generated by the algorithm and rep-
resent the shared set of properties. The others represent the original ontology
classes.

Each class will be associated with the concept having the largest num-
ber of shared properties. As shown in Figure 1, we note that the Concept_7
combines the two classes ProductSubLineItemType and ProductLineItemType
with 19 shared properties; Concept_8 joins ServiceLineItemByOptionType and
ServiceLineItemType because of 22 shared properties.

The combined classes share some semantics consistent with the concept def-
initions provided by RosettaNet. They represent one concept (Concept_7 and
Concept_8) that has been generated by our approach. As the regrouped classes
share tokens in their compound names, we will use these to rename the FCA
generated names. So, Concept_7 becomes ProductLineItem and Concept_8,
ServiceLineItem.

Using the generated group of classes, we update the original ontology. To do
this, we used the OWL API3 for manipulating, developing and maintaining the
ontology.

4 Experimentation

The goal of our study is to evaluate the efficiency of our approach for concept
detection in an OWL ontology. In this section, we describe our experimental
setup and results.

In order to test our methodology, we use the RosettaNet Ontology, proposed
in our ICEIS 2013 paper [5]. It is the result of mapping the full set of Roset-
taNet Partner Interface Process (PIP) descriptions, currently defined with DTD
or XML Schemas format, to an ontological representation using an OWL/XML
rendering. Among the 132 PIPs, 112 PIPs are available for download from the
PIP Directory in RosettaNet website from which we generated 138 OWL doc-
uments, valid according to the XML Schema for OWL/XML serialization from
syntactical point of view. These OWL documents were also checked for consis-
tency with an OWL reasonner.

In Table 3, we evaluate our RosettaNet Ontology using state of the art ontol-
ogy metrics defined in Table 2. Only basic metrics related to the main elements
of ontologies have been used [11]. Although, we use two metrics that indicate
the relationship and inheritance richness of an ontology schema. The Relation-
ship Richness metric (rr) reflects the diversity and placement of relations in
the ontology [13]. It is defined as the ratio of the number of properties (nop)
divided by the sum of the number of subclasses (nosc) plus the number of prop-
erties. Also, the Inheritance Richness metric (ir) represents how knowledge
is grouped across different levels of the ontology inheritance tree [13]. It is the
average number of subclasses per class.
3 http://owlapi.sourceforge.net/

29

Table 2. Ontology metrics.

Metrics Definition

N
um

be
r
of

classes (noc) number of classes (|C|) in the ontology.
data properties (nodp) number of data properties.
object properties (noop) number of object properties.
properties (nop) sum of nodp and noop metrics.
subclasses (nosc) number of subclasses (|sC|) in the ontology.

root classes (norc) number of root classes (without superclasses). The range
of this metric is between 1 and |C|.

leaf classes (nolc) classes without subclasses. The range of this metric is
between 1 and |C|.

Table 3. Empirical analysis of our RosettaNet Ontology using some Ontology Metrics:
Before and After applying our FCA-based Concept Detection Approach.

Metrics All PIPs (Before) All PIPs (After)
noc 1252 1252
nodp 3045 3045
noop 2607 2607
nop 5652 5652
nosc 0 384
norc 1252 1050
nolc 1252 868
rr 1 0.93
ir 0 0.31

We notice in Table 3 that the values of ir and nosc metrics are zero and
the values of norc and nolc are equal to the number of classes |C| in the on-
tology. These metric values indicate that our original RosettaNet PIP Ontology
as generated from the DTD and XML Schemas is a flat or horizontal ontology
representing a general knowledge despite the fact that RosettaNet represents a
specific domain of interest with many elements sharing a common semantics.

The application of our FCA-based Concept Detection approach extracts 182
groups of concepts comprising 384 classes from the 1252 in the ontology, bringing
the inheritance metric ir from 0 to 0.31. On average, each concept contains 2
classes.

We extracted 90 groups of concepts because several concepts are shared be-
tween PIP files e.g. the concept, combining RegionalBusinessTaxIdentifier
and NationalBusinessTaxIdentifier classes, is detected in 3 PIPs (PIP3A5,
PIP3A11 and PIP3B6).

We also performed a manual validation of all detected concepts. We noticed
that among the 90 concepts detected, 79 concepts have effectively a common
semantics. So, we have a detection precision of 87%. From Table 3, we can see
that the value of nosc and ir metrics increase, norc and nolc decrease after
applying our FCA-based approach.

30

5 Related Work

Ontologies and Formal Concept Analysis (FCA) aim at modeling concepts [1].
For this reason, we use FCA to regroup concepts in a flat ontology representing
general knowledge to improve its inheritance richness. To our knowledge, no
previous work has addressed the problem of flat ontology using FCA techniques.

Some FCA-based proposals in Ontology Engineering differ from our own
strategy with respect to the nature of the problem. Cimiano et al. [1] proposed
a benchmark to discuss how FCA can be used to support Ontology Engineering
and how ontology can be exploited in FCA applications. The FCA can support
the building of the ontology and the constructed ontology can be analyzed and
navigated using FCA techniques [1].

Stumme [12] presents an Ontology Merging approach based on FCA, named
FCA-MERGE, for organizing business knowledge. It takes as input one or more
source ontologies and returns a merged ontology between the given source on-
tologies.

Obitko et al. [9] propose an approach to improve ontology design by discov-
ering the need for new objects (or classes) and relations (properties). They argue
for the necessity of a better description of concepts and relations than just or-
dering them in taxonomy. In our case, we consider instead regrouping concepts
from existing ontology classes for improving the taxonomy representation in a
flat ontology.

6 Conclusion

We have presented an approach for concepts detection in a flat ontology using
a Formal Concept Analysis and applied this methodology on a RosettaNet PIP
Ontology which was automatically generated ontology.

Our goal is to improve the readability, maintainability and inheritance rich-
ness of an ontology. We used FCA to detect groups of concepts sharing properties
and having a common semantics. Through the use of ontology metrics, we have
shown that our FCA-based concept detection methodology can improve inheri-
tance richness.

As the results using RosettaNet are promising, we suggest as future work to
test the efficiency of our concept detection approach to other ontologies dealing
with other domains.

Acknowledgements

We would like to thank RosettaNet Group for allowing us to download the
RosettaNet Partner Interface Processes (PIPs) from the RosettaNet website.
This work has been partially funded by Tunisian Government and NSERC.

31

References

1. Cimiano, P., Hotho, A., Stumme, G., Tane, J.: Conceptual knowledge processing
with formal concept analysis and ontologies. In: Concept Lattices, pp. 189–207.
Springer (2004)

2. Dogac, A., Kabak, Y., Laleci, G.B.: Enriching ebXML registries with OWL ontolo-
gies for efficient service discovery. Proceedings of the 14th International Workshop
on Research Issues on Data Engineering: Web Services for E-Commerce and E-
Government Applications (RIDE) (2004)

3. Euzenat, J., Shvaiko, P.: Ontology Matching, vol. 18. Springer Heidelberg (2007)
4. Gómez-Pérez, A., Corcho, O., Fernandez-Lopez, M.: Ontological Engineering.

Springer-Verlag, London, Berlin (2002)
5. Jridi, J.E., Lapalme, G.: Adapting RosettaNet B2B standard to Semantic Web

Technologies. vol. 2, pp. 484–491. 15th International Conference on Enterprise
Information Systems, Angers, France (July 2013)

6. Kotinurmi, P., Haller, A., Oren, E.: Ontologically Enhanced RosettaNet B2B In-
tegration. Semantic Web for Business: Cases and Applications (2008)

7. Kotinurmi, P., Haller, A., Oren, E.: Global Business: Concepts, Methodologies,
Tools and Application, vol. 4, chap. Ontologically enhanced RosettaNet B2B In-
tegration, p. 27. USA (2011)

8. Lytras, M., García, R.: Semantic Web applications: a framework for industry and
business exploitation–what is needed for the adoption of the semantic web from
the market and industry. International Journal of Knowledge and Learning 4(1),
93–108 (2008)

9. Obitko, M., Snasel, V., Smid, J., Snasel, V.: Ontology design with formal concept
analysis. Concept Lattices and their Applications, Ostrava: Czech Republic pp.
111–119 (2004)

10. Sheldon, F.T., Jerath, K., Chung, H.: Metrics for maintainability of class inheri-
tance hierarchies. Journal of Software Maintenance and Evolution: Research and
Practice 14(3), 147–160 (2002)

11. Sicilia, M., Rodríguez, D., García-Barriocanal, E., Sanchez-Alonso, S.: Empirical
findings on ontology metrics. Expert Systems with Applications 39(8), 6706–6711
(2012)

12. Stumme, G.: Using ontologies and formal concept analysis for organizing business
knowledge. In: In Proc. Referenzmodellierung 2001. Citeseer (2001)

13. Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: OntoQA:
Metric-based ontology quality analysis. In: IEEE Workshop on Knowledge Ac-
quisition from Distributed, Autonomous, Semantically Heterogeneous Data and
Knowledge Sources. vol. 9 (2005)

14. Wang, J., Song, Y.: Architectures supporting RosettaNet. In: Software Engineering
Research, Management and Applications, 2006. Fourth International Conference
on. pp. 31–39. IEEE (2006)

32

Bases via Minimal Generators∗

Pablo Cordero, Manuel Enciso, Angel Mora, Manuel Ojeda-Aciego
Universidad de Málaga, Spain

pcordero@uma.es, enciso@lcc.uma.es, amora@ctima.uma.es, aciego@uma.es

July 24, 2013

Abstract
The concept lattice corresponding to a context may be alternatively specified

by means of attribute implications. One outstanding problem in formal concept
analysis and other areas is the study of the equivalences between a given set of
implications and its corresponding basis (notice that there exists a wide range of
approaches to basis in the literature). In this work we introduce a method to pro-
vide a Duquenne-Guigues basis corresponding to the minimal generators and their
closed sets from a context.

1 Introduction
The main goal of Formal Concept Analysis (FCA) is to identify the relationships be-
tween sets of objects and sets of attributes using information from a cross table. The
derivation operators establish a Galois connection between the power sets of objects
and attributes which generates a complete lattice, the so-called concept lattice.

One obvious goal in this framework is to remove redundancy and obtain a mini-
mal basis. The most widely approach comes from the notion of Duquenne-Guigues
Basis [4] also called stem base. This basis is minimal with respect to the number of
implications, i.e. if some implication is removed from the basis, there exist valid and
non-redundant implications which are valid in the dataset and cannot be inferred from
the new reduced basis using Armstrong’s Axioms.

In [2], the authors presented an algorithm to obtain all the minimal generators and
their corresponding closures. From that information it is possible to build a set of
implications which mimics exactly the underlying concept lattice, by using a minimal
generator as antecedent and its corresponding closure as consequent. Obviously, this
set can be somehow minimized, obtaining what is called a basis; in this paper, we will
focus on the Duquennes-Guigues basis.

Specifically , a method is introduced to calculate a Duquenne-Guigues basis from
all closed sets and their minimal generator.

∗Partially supported by grants P09-FQM-5233 of the Junta de Andalucı́a, and TIN09-14562-C05-01,
TIN2011-28084, and TIN12-39353-C04-01 of the Science and Innovation Ministry of Spain, co-funded by
the European Regional Development Fund (ERDF).

33

2 Background
We assume as known the basic concepts of Formal Concept Analysis (FCA). [3, 11]

2.1 Simplification logic and closures
We summarize the axiomatic system of Simplification Logic for Functional Depen-
dencies SL

FD
equivalent to the well-know Armstrong’s Axioms. It avoids the use of

transitivity and is guided by the idea of simplifying the set of implications by efficiently
removing redundant attributes inside the implications [1]. We define SL

FD
as the pair

(LFD,SFD) where the axiomatic system SFD has the following axiom scheme and
inference rules. The third rule is named Simplification rule and it is the core of SL

FD
:

[Ref]
A ⊇ B

A→B

[Frag]
A→B ∪ C

A→B
[Comp]

A→B, C→D

A ∪ C→B ∪D
[Simp]

A→B, C→D

A ∪ (C rB)→D

3 Obtaining basis from minimal generators
As stated in the introduction, the goal of this position paper can be considered one step
beyond the work presented in [2], where we illustrated the use of the Simplification
paradigm to guide the search of all minimal generator sets.

Our main goal is studied here: a method to get a Duquenne-Guigues basis given
the set of all the minimal generators and its corresponding closed sets.

Based on the properties of minimal generators - closed sets and in SL
FD

, we pro-
pose an operator that characterizes when it is possible to remove redundant attributes in
a set of implications. The exhaustive application of this result produces a reduced im-
plication set and, in some cases, with an empty right-hand side. These implications are
removed from the output set, returning a Duquenne-Guigues basis (see Theorem 3.4).

Thus, summarizing our proposal, from a set of (minimal generators, closed set) the
method returns a Duquenne-Guigues basis.

Theorem 3.1 Let 〈A∪B,A〉, 〈C ∪D,C〉 be two pairs obtained using MinGen algo-
rithm [2] 1 where A,C are minimal generators and A ∪ B,C ∪D are closed sets. In
this situation, the following implications are valid: {A→B,C→D}

If A ⊆ C, then the following equivalence holds:

{A→B,C→D} ≡ {A→B, (C ∪B)→(D rB)} (3.1)

Notice that (C ∪B ∪D rB) is a closed set.

The above equivalence (3.1), infers the definition of an operator that reduces the set
of implications if we apply it exhaustively.

1Closed sets - minimal generators can be calculated using others methods well known.

34

Definition 3.2 Let 〈A∪B,A〉, 〈C∪D,C〉 be two pairs obtained using MinGen algo-
rithm and let Γ = {A→B,C→D} be the corresponding equivalent set of implications.
We define the following operator:

Υ(A→B,C→D) = {A→B,C ∪B→D rB}

This operator is applied only when A ⊆ C. We traverse the set of implications and
for any two implications we check whether A ⊆ C or C ⊆ A, applying the operator if
it is the case. We have developed in Prolog this operator.

In the following definition, we present the way in which the Υ operator will be
applied to a set of implications. The way in which we check both inclusions of the left
hand sides of the implications, reduces the traversing of the Γ set because we compare
each implication only with all later implications in the Γ set.

Definition 3.3 Let Γ = {A1→B1, A2→B2 . . . An→Bn} be a set of implications. We
define the application of the operator Υ to a set of implications as its exhaustive appli-
cation as follows: Υ(Γ) = {Υ(Ai, Aj), i=1. . . n-1, j=i+1. . . n}

Theorem 3.4 Let Φ = (〈C1,mg(C1)〉, 〈C2,mg(C2)〉, . . .) be a set where Ci is a
closed set of attributes and mg(Ci) = {D : D is a mingen and D+ = Ci}. And let
Γ = {A1→B1, . . .} the set of implications deduced from Φ. The operator Υ(Γ) ren-
ders the Duquenne-Guigues basis equivalent to Γ.

The proof aries from the transformation made with the Υ operator, which completes
the left-hand side to be a pseudo-intent and remove implications from the original set
to get minimal cardinality.

Example 3.1 Let Γ = {b→acef, ad→ef, abd→cef} a set of implications equivalent
to the following set of closed sets and their minimal generators = {〈abcdef, {abd}〉,
〈adef, {ad}〉, 〈abcef, {b}〉, 〈∅, {∅}〉}. Applying exhaustively the Υ operator to any
pair of implications of Γ we get the following set of implications, which conforms with
a Duquenne-Guigues basis.

Γ′ = {b→acef, ad→e}

4 Conclusions and future works
In this paper we present an operator which allows the transformation of a set of impli-
cations builds over the set of all minimal generators into a Duquenne-Guigues basis.
The first step is to use MinGen Algorithm introduced in [2] to compute all minimal
generators corresponding to an arbitrary set of implications. A deep study about the
soundness, completeness, and complexity of the algorithms proposed are the plan of
work that we sketch in this proposal paper. In the future, our interest is to achieve a
basis not only with minimal cardinality in the number of implications but also with
minimal size in the attributes inside of the implications. The operator defined in this
work is the first step in this direction.

35

References
[1] P. Cordero, M. Enciso, A. Mora, I.P, de Guzmán: SLFD logic: Elimination of

data redundancy in knowledge representation, LNCS 2527: 141–150, 2002.

[2] P. Cordero, M. Enciso, A. Mora, M. Ojeda-Aciego: Computing minimal genera-
tors from implications: a logic-guided approach, Concept Lattice and Aplications
- CLA 2012: 187-198, 2012.

[3] B. Ganter, Two basic algorithms in concept analysis. Technische Hochschule,
Darmstadt, 1984.

[4] J.L. Guigues and V. Duquenne, Familles minimales d’implications informatives
résultant d’un tableau de données binaires. Math. Sci. Humaines, 95, 5–18, 1986.

[5] M. Hermann and B. Sertkaya, On the Complexity of Computing Generators of
Closed Sets. ICFCA 2008: 158–168

[6] R. Hill, Computational Intelligence and Emerging Data Technologies. 2nd Intl
Conf on Intelligent Networking and Collaborative Systems (INCOS’10), pg 449–
454, 2010.

[7] A. Mora, P. Cordero, M. Enciso, I. Fortes, Closure via functional dependence
simplification, IJCM, 89(4): 510–526, 2012.

[8] L. Szathmary and A. Napoli and S. O. Kuznetsov, ZART: A Multifunctional Item-
set Mining Algorithm , Proc. of the 6th Intl. Conf. on Concept Lattices and Their
Applications (CLA ’08): 47–58, 2008.

[9] L. Szathmary and P. Valtchev and A. Napoli and R. Godin, An Efficient Hybrid
Algorithm for Mining Frequent Closures and Generators, Concept Lattices and
Their Applications (CLA ’07): 26–37, 2007.

[10] K. Nehmé, P. Valtchev, M. H. Rouane, R. Godin, On Computing the Minimal
Generator Family for Concept Lattices and Icebergs, LNCS 3403: 192–207,
2005.

[11] R. Wille, Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In I. Rival (ed.), Ordered sets, pp. 445-470, 1982.

36

Debugging Program Code Using Implicative
Dependencies

Artem Revenko12

1 Technische Universität Dresden
Zellescher Weg 12-14, 01069 Dresden, Germany

2 National Research University Higher School of Economics
Pokrovskiy bd. 11, 109028 Moscow, Russia

artem viktorovich.revenko@mailbox.tu-dresden.de

Abstract. Based on the technique for finding errors in new object in-
tents a method of debugging source code is presented. This method is
capable of finding strict implicative dependencies between lines of source
code covered in successful and failed runs. The output is a logical expres-
sion. Using the new method it is possible to come closer to debugging
programs on a logical level not checking executions line by line. An ex-
ample of applying the new method is presented. Possibilities of further
development are discussed.

Keywords: formal context analysis, implication, debugging

1 Introduction

Automatic debugging is not a new topic in science and is investigated by many
computer scientist. For example, in [16] authors investigate a novel method of
“relative debugging” which consists in comparing particular values of data struc-
tures. In [1] and [9] authors survey different approaches to automatic debugging.
In the well known work [19] the Delta Debugger tool is presented; authors intro-
duce an approach to isolation of failure-inducing inputs. However, when it comes
to finding actual causes of the failure it is still not possible to automatically ex-
plain the failure logically. Usually near-probabilistic criteria like chi-square are
used [4]. Somehow it does not correspond to the correctness of the program as
a program bug is either present or not.

In this work we use recent advance in Formal Concept Analysis in an attempt
to find logical dependencies between fails and successful runs of a program.
For example, it could be that as long as a particular part of “if” statement
is not covered during the program run (i.e. a particular conditional clause is
not satisfied) the program runs successfully; this would mean that a bug lies
probably in this particular part of the program.

Implications which can be derived from data tables (formal context) repre-
sent strong logical dependencies between attributes. We use this advantage of
implications to introduce a way of debugging program code following the logic
of a program.

37

Several studies were performed to discover the possibilities of using Formal
Concept Analysis in software development. For example, in [17] and [10] authors
use Formal Concept Analysis for building class hierarchies. In [13] FCA is used to
determine dependencies on program trace. Authors reveal causal dependencies
and even are able to find ”likely invariants“ of program in special cases. A
very interesting work on fault localization is presented in [3]. However, to our
best knowledge there are no works about applying Formal Concept Analysis to
program debugging.

In our previous work [14] we have introduced two approaches to revealing
errors in new object intents. In this paper we recall them; one is based on com-
puting the implication system of the context and another one is based on com-
puting the closures of the subsets of the new object intent. Since computing
closures may be performed much faster we improve and generalize this approach
and finally obtain a procedure for finding all possible errors of the considered
types.

After that we present a method of debugging based on the discussed above
technique of finding errors in data. We provide an example and discuss the
possibilities of further development.

2 Main Definitions

In what follows we keep to standard definitions of FCA [8]. Let G and M be sets
and let I ⊆ G×M be a binary relation between G and M . Triple K := (G,M, I)
is called a (formal) context.

The set G is called a set of objects. The set M is called a set of attributes.
Consider mappings ϕ : 2G → 2M and ψ : 2M → 2G: ϕ(X) := {m ∈ M |

gIm for all g ∈ X}, ψ(A) := {g ∈ G | gIm for all m ∈ A}. Mappings ϕ and
ψ define a Galois connection between (2G,⊆) and (2M ,⊆), i.e. ϕ(X) ⊆ A ⇔
ψ(A) ⊆ X. Hence, for any X1, X2 ⊆ G, A1, A2 ⊆M one has

1. X1 ⊆ X2 ⇒ ϕ(X2) ⊆ ϕ(X1)
2. A1 ⊆ A2 ⇒ ψ(A2) ⊆ ψ(A1)
3. X1 ⊆ ψϕ(X1) and A1 ⊆ ϕψ(A1)

Usually, instead of ϕ and ψ a single notation (·)′ is used. (·)′ is usually called a
derivation operator. For X ⊆ G the set X ′ is called the intent of X. Similarly,
for A ⊆M the set A′ is called the extent of A.

Let Z ⊆ M or Z ⊆ G. (Z)′′ is called the closure of Z in K. Applying
Properties 1 and 2 consequently one gets the monotonicity property: for any
Z1, Z2 ⊆ G or Z1, Z2 ⊆M one has Z1 ⊆ Z2 ⇒ Z ′′

1 ⊆ Z ′′
2 .

Let m ∈ M,X ⊆ G, then m is called a negated attribute. m ∈ X ′ whenever
no x ∈ X satisfies xIm. Let A ⊆M ; A ⊆ X ′ iff all m ∈ A satisfy m ∈ X ′.

An implication of K := (G,M, I) is defined as a pair (A,B), written A→ B,
where A,B ⊆ M . A is called the premise, B is called the conclusion of the
implication A → B. The implication A → B is respected by a set of attributes
N if A * N or B ⊆ N . The implication A → B holds (is valid) in K if it is

38

respected by all g′, g ∈ G, i.e. every object, that has all the attributes from A,
also has all the attributes from B. Implications satisfy Armstrong rules:

A→ A
,

A→ B

A ∪ C → B
,

A→ B,B ∪ C → D

A ∪ C → D

A support of an implication in context K is the set of all objects of K, whose
intents contain the premise and the conclusion of the implication. A unit impli-
cations is defined as an implication with only one attribute in the conclusion,
i.e. A→ b, where A ⊆M, b ∈M . Every implication A→ B can be regarded as
the set of unit implications {A→ b | b ∈ B}. One can always observe only unit
implications without loss of generality.

An implication basis of a context K is defined as a set L of implications of K,
from which any valid implication for K can be deduced by the Armstrong rules
and none of the proper subsets of L has this property.

A minimal implication basis is an implication basis minimal in the number of
implications. A minimal implication basis was defined in [11] and is known as the
canonical implication basis. In [6] the premises of implications from the canonical
base were characterized in terms of pseudo-intents. A subset of attributes P ⊆M
is called a pseudo-intent, if P 6= P ′′ and for every pseudo-intent Q such that
Q ⊂ P , one has Q′′ ⊂ P . The canonical implication basis looks as follows:
{P → (P ′′ \ P) | P - pseudo-intent}.

We say that an object g is reducible in a context K := (G,M, I) iff ∃X ⊆ G :
g′ =

⋂
j∈X

j′.

All sets and contexts we consider in this paper are assumed to be finite.

3 Finding Errors

In this section we use the idea of data domain dependency. Usually objects and
attributes of a context represent entities. Dependencies may hold on attributes of
such entities. However, such dependencies may not be implications of a context
as a result of an error in object intents. Thereby, data domain dependencies
are such rules that hold on data represented by objects in a context, but may
erroneously be not valid implications of a context.

Every object in a context is described by its intent. In the data domain
there may exist dependencies between attributes. In this work we consider only
dependencies that do not have negations of attributes in premises. As mentioned
above there is no need to specially observe non-unit implications. In this work
we try to find the algorithm to reveal the following two most simple and common
types of dependencies (A ⊆M, b, c ∈M):

1. If there is A in an object intent, there is also b, which is represented by the
implication A→ b

2. If there is A in an object intent, there is no b, which can be symbolically
represented as A→ b

39

If we have no errors in a context, all the dependencies of Type 1 are deducible
from implication basis. However, if we have not yet added enough objects in the
context, we may get false consequence. Nevertheless, it is guaranteed that none
of valid dependencies is lost, and, as we add objects without errors we reduce
the number of false consequences from the implication basis.

The situation is different if we add an erroneous object. It may violate a
dependency valid in the data domain. In this case, until we find and correct the
error, we are not able to deduce all dependencies valid in the data domain from
the implication basis, no matter how many correct objects we add afterwards.

We aim to restore valid dependencies and therefore correct errors.

Below we assume that we are given a context (possibly empty) with correct
data and a number of new object intents that may contain errors. This data
is taken from some data domain and we may ask an expert whose answers are
always correct. However, we should ask as few questions as possible.

We quickly recall two different approaches to finding errors introduced in
our previous works. The first one is based on inspecting the canonical basis of
a context. When adding a new object to the context one may find all implica-
tions from the canonical basis of the context such that the implications are not
respected by the intent of the new object. These implications are then output
as questions to an expert in form of unit implications. If at least one of these
implications is accepted, the object intent is erroneous. Since the canonical basis
is the most compact (in the number of implications) representation of all valid
implications of a context, it is guaranteed that the minimal number of questions
is asked and no valid dependencies of Type 1 are left out.

Although this approach allows one to reveal all dependencies of Type 1, there
are several issues. The problem of producing the canonical basis with known
algorithms is intractable. Recent theoretical results suggest that the canonical
base can hardly be computed even with polynomial delay ([5], [2], [12]). One can
use other bases (for example, see progress in computing proper premises [15]),
but the algorithms known so far are still too costly and non-minimal bases do not
guarantee that the expert is asked the minimal sufficient number of questions.

However, since we are only interested in implications corresponding to an
object, it may be not necessary to compute a whole implication basis. Here is
the second approach. Let A ⊆M be the intent of the new object not yet added
to the context. m ∈ A′′ iff ∀g ∈ G : A ⊆ g′ ⇒ m ∈ g′, in other words, A′′

contains the attributes common to all object intents containing A. The set of
unit implications {A → b | b ∈ A′′ \ A} can then be shown to the expert. If all
implications are rejected, no attributes are forgotten in the new object intent.
Otherwise, the object is erroneous. This approach allows one to find errors of
Type 1.

However, the following case is possible. Let A ⊆M be the intent of the new
object such that @g ∈ G : A ⊆ g′. In this case A′′ = M and the implication
A→ A′′ \A has empty support. This may indicate an error of Type 2, because
the object intent contains a combination of attributes impossible in the data
domain, but the object may be correct as well. An expert could be asked if the

40

combination of attributes in the object intent is consistent in the data domain.
For such a question the information already input in the context is not used.
More than that, this question is not sufficient to reveal an error of Type 1.

Proposition 1. Let K = (G,M, I), A ⊆M . The set

IA = {B → d | B ∈MCA, d ∈ B′′ \A ∪A \B},

whereMCA = {B ∈ CA|@C ∈ CA : B ⊂ C} and CA = {A∩g′ | g ∈ G}, is the set
of all unit implications (or their non-trivial consequences with some attributes
added in the premise) of Types 1 and 2 such that implications are valid in K,
not respected by A, and have not empty support.

Proposition 1 allows one to find an algorithm for computing the set of ques-
tions to an expert revealing possible errors of Types 1 and 2. The pseudocode is
pretty straightforward and is not shown here for the sake of compactness.

Since computing the closure of a subset of attributes takes O(|G|×|M |) time
in the worst case, and we need to compute respective closures for every object
in the context, the time complexity of the whole algorithm is O(|G|2 × |M |).

We may now conclude that we are able to find possibly broken dependencies
of two most common types in new objects. However, this does not always indicate
broken real dependency, as we not always have enough information already input
in our context. That is why we may only develop a hypothesis and ask an expert
if it holds.

For more details, example, and the proof of Proposition 1, please, refer to
[14].

4 Debugging

4.1 Context Preparation

Normally debugging starts with a failure report. Such a report contains the input
on which the program failed. By this we mean that our program was not able to
output the expected result or did not finish at all. This implicitly defines “goal”
function which is capable of determining either a program run was successful
or not. We could imagine a case where we do not have any successful inputs,
i.e. those inputs which were processed successfully by the program. However, it
does not seem reasonable. In a such a case the best option seems to rewrite the
code or look for obvious mistakes. Modern techniques of software development
suggest running tests even before writing code itself; unless the tests are passed
code is not considered finished. Therefore, successful inputs are at least those
contained in the test suites.

As discussed in the beginning of this paper the problem of finding appropriate
inputs was considered by different authors. This problem is indeed of essential
importance for debugging. However, we do not aim at solving it. Instead we
assume that inputs are already found (using user reports, random generator, or

41

something else), processed (it is better if inputs are minimized, however, not
necessary), and are at hands. We focus on processing the program runs on given
inputs.
Our method consists in the following. We construct two contexts: first with
successful runs as objects, second with failed runs. In both cases attributes are
the lines of the code (conveniently presented via line numbers). We put a cross
if during the processing of the input the program has covered the corresponding
line. So in both cases we record the information about covered lines during the
processing of the inputs. After the contexts are ready we treat all the objects from
the context with failed runs as new objects and try to find errors as described in
the previous sections. Expected output is implication of the form A → B. The
interpretation is as follows: in successful runs whenever lines A are covered, lines
B are covered as well. However, in the inspected failed run lines A were covered
and lines B were not covered. Debugging consists now in finding the reason why
lines B were not covered in the processing of the failed run.

This is not absolutely automatic debugging, however, we receive some more
clues and may find a bug without checking the written code line by line. More
than that, this method is logically strict, it does not deal with any kind of
probability. This corresponds to the real situation: the bug is or is not there,
not with any probability.

4.2 Example

Consider the following function written in Python (example taken from [18]):

Listing 1.1: remove html markup [18]

1 def remove html markup (s) :
2 tag = False
3 quote = False
4 out = ””
5 for c in s :
6 i f (c == ’< ’ and
7 not quote) :
8 tag = True
9 e l i f (c == ’> ’ and

10 not quote) :
11 tag = False
12 e l i f (c == ’ ” ’ or
13 c == ” ’ ” and
14 tag) :
15 quote = not quote
16 e l i f not tag :
17 out = out + c
18 return out

The goal of the function, as follows from its name, is to remove html markup
from the input, no matter if it occurs inside or outside quotes. Therefore, we

42

may formulate our goal as: no < in output. Such a formulation does not allow
us to catch all the bugs (as seen from the contexts below the input "foo" has
enabled the program to reach the line 15 which should not have happened, but
it is considered as a successful run), but it suffices for our purposes.

The function works as follows. After initialisation we have four “if” cases.
The first and the second one checks if we have encountered a tag symbol outside
of quotes. If so, the value of “tag” is changed. The third one checks if we have
encountered a quote symbol inside tag. This is important for not closing a tag
if the closing symbol happens to be in one of the parameters (see inputs). If so,
the value of “quote” is changed. The last “if” adds the current character to the
output if we are outside the tag.

We consider the following set of inputs: foo, foo, "foo",
"a", "", "<>", "foo", ’foo’, foo, "", <"">, <p>,
">foo

We run the function on every input and check if the output contains the
symbol “<”. If it does not, the run was successful. We also record the lines
coverage during every run, gather this information, and construct two context:

Context with successful runs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

foo × × × × × × × × × × ×
foo × × × × × × × × × × × × × × ×
"foo" × × × × × × × × × × × ×
’foo’ × × × × × × × × × × × ×
foo × × × × × × × × × × × × × × ×
">foo × × × × × × × × × × × × × × × ×
"" × × × × × × × × ×
<""> × × × × × × × × × × × × ×
<p> × × × × × × × × × × × × × ×

Context with failed runs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

"foo" × × × × × × × × × × × × × ×
"a" × × × × × × × × × × × × × ×
"" × × × × × × × × × × × × × ×
"<>" × × × × × × × × × × × × × ×

Fig. 1: Contexts with failed and successful runs

It is easy to notice that in the processing of every failed input the same
lines are covered. Therefore, the only difference between different objects in the
context with failed runs is the names of the objects.

43

Inspecting any of the failed inputs in the context with successful runs using
the described above technique for finding errors yields the following implication:

7, 13, 15→ 8, 11

What is essentially said is the following: in a successful run if the lines 7, 13,
and 15 were covered then the lines 8 and 11 were also covered; in every failed
run the lines 7, 13, and 15 were covered, but the lines 8 and 11 were not covered.
We now expect the mentioned above lines and their impact to the program run.

If the line 7 is covered then the condition in the line 6 was met. Therefore,
the line 7 is covered whenever there is the symbol “<” in the input.

If the line 13 is covered then the condition in the line 12 was not met and the
conditions of the first two “if” clauses were not met. This means that for some
symbol from the input we should not change the value of “tag” and the symbol
is not “"”.

If the line 15 was covered then the condition of the third “if” clause was met
and the conditions of the first two “if” clauses were not met. Therefore, some
symbol in the input was either “"” or “’” and the “tag” was set to True.

If the line 8 was not covered then the value of “tag” was never set to True

(because we do not have this variable set to True elsewhere in our program and
originally it is initialized to False). There is no need to go further to the line 11
in our investigation, because we have already found a contradiction. The value
of “tag” should have been set to True to reach the line 15, but it was never set
to True. From this we can deduce that possibly the condition of the third “if”
clause erroneously evaluates to True without checking that “tag” equals True.

The key to this puzzle is the following. In Python as well as in many other
languages logical operation “and” has a higher priority than “or”, so condition
of the third “if” (c == ’"’ or c == "’" and tag) is implicitly transformed
in (c == ’"’ or (c == "’" and tag)). In other words on lines 12 and 13
brackets are forgotten. After debugging the condition should look as follows:
((c == ’"’ or c == "’") and tag) and the program runs correctly.

4.3 Further Development

The sequence in which the lines of code were covered contains even more in-
formation about the execution of a program. This information may reveal even
more dependencies in the working flow of a program. It may also happen that
the only difference between successful and failed runs is in the sequence in which
the lines are covered, whereas the set of covered lines remains the same. In this
manner we also take into account the sequential aspect of the loop that is not
taken into account in the previous example.

It is not difficult to extend the introduced method with this new feature.
For this purpose we change the attributes of our context. Now an attribute
contains two numbers: the first number corresponds to the preceding covered
line and the second number corresponds to the succeeding covered line. The
information from the original modification of the method may still be captured

44

with attributes that have the same line number two times. However, we may
be not interested in the absolute precedence relation between the lines, because
this information is excessive and difficult to interpret while the size of the set of
attributes increases dramatically. That is why we also introduce a new parameter
containing information about the delay of interest. Below we are only interested
in the precedence relation within this delay, i.e. not more than the dealy number
of lines should be covered between the two specified lines in order to add them
to the relation I.

The number of attributes for this case, assuming that any line may precede
and succeed any other line including itself, is |M |d, where d is the delay.

Unfortunately, the result obtained using this modification may be difficult to
interpret even if the delay is small. It makes sense to consider this modification
only if the standard modification does not yield any results.

For the remove_html_markup function and d = 1 we obtain the following
results:

1. (10, 10), (12, 15)→ (8, 8), (11, 11), (10, 11), (11, 5), (9, 10), (7, 8),
(17, 17), (9, 12), (15, 5), (13, 13), (13, 16), (16, 16), (16, 17);

2. (17, 17), (15, 5)→ (10, 10), (7, 7);
3. (13, 13), (15, 15), (7, 7)→ (9, 12), (16, 17), (12, 15), (15, 5),

(8, 8), (11, 11), (10, 11), (11, 5), (9, 10), (7, 8), (12, 13).

In the result we still have the same obtained dependency as we had before,
namely Implication 3. However, we have two more obtained results that reveal
more structural features of the bug. An interpretation of this result is left to the
reader.

For example, we consider Implication 1. Actually already in the premise of
this implication we can recognize a clue to finding the bug. Indeed, having a
pair 12 and 15 with delay 1 means the following: after the line 12 the execution
jumped to the line 15. After checking only condition in the line 12 (which hap-
pened to be true) execution jumped to the consequence. As already described,
the interpreter has understood the condition as a disjunction and has only eval-
uated the first expression (which would be enough in case of disjunction).

5 Conclusion

Based on the procedure for finding errors in new object intents a method of
debugging source code was proposed. This method finds strict dependencies
between source code coverage in successful and failed runs. The output of the
debugging method is a logical expression which allows one to find bugs following
the implicit logic of the program. Further modification of the method is possible
(described above), however, it leads to results that are difficult to interpret.

Acknowledgements The author was supported by German Academic Ex-
change Service (DAAD).

45

Author thanks Sergei Kuznetsov and other participants of the project Mathe-
matical Models, Algorithms, and Software Tools for Intelligent Analysis of Struc-
tural and Textual Data supported by the Basic Research Program of the Na-
tional Research University Higher School of Economics for discussion and useful
remarks.

References

1. Hiralal Agrawal. Towards automatic debugging of computer programs. Technical
report, ph.d. thesis, Purdue University, 1991.

2. Mikhail A. Babin and Sergei O. Kuznetsov. Computing premises of a minimal
cover of functional dependencies is intractable. Discrete Applied Mathematics,
161(6):742–749, 2013.

3. Peggy Cellier, Mireille Ducassé, Sébastien Ferré, and Olivier Ridoux. Formal con-
cept analysis enhances fault localization in software. In Raoul Medina and Sergei A.
Obiedkov, editors, ICFCA, volume 4933 of Lecture Notes in Computer Science,
pages 273–288. Springer, 2008.

4. Holger Cleve and Andreas Zeller. Locating causes of program failures. In Gruia-
Catalin Roman, William G. Griswold, and Bashar Nuseibeh, editors, ICSE, pages
342–351. ACM, 2005.

5. Felix Distel and Barış Sertkaya. On the complexity of enumerating pseudo-intents.
Discrete Applied Mathematics, 159(6):450–466, 2011.

6. Bernhard Ganter. Two basic algorithms in concept analysis. Preprint-Nr. 831,
1984.

7. Bernhard Ganter, Gerd Stumme, and Rudolf Wille, editors. Formal Concept Anal-
ysis, Foundations and Applications, volume 3626 of Lecture Notes in Computer
Science. Springer, 2005.

8. Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foun-
dations. Springer, 1999.

9. Michael Gerndt. Towards automatic performance debugging tools. In AADEBUG,
2000.

10. Robert Godin and Petko Valtchev. Formal concept analysis-based class hierarchy
design in object-oriented software development. In Ganter et al. [7], pages 304–323.

11. J.-L. Guigues and V. Duquenne. Familles minimales d’implications informatives
résultant d’un tableau de données binaires. Math. Sci. Hum, 24(95):5–18, 1986.

12. Sergei O. Kuznetsov and Sergei A. Obiedkov. Some decision and counting prob-
lems of the duquenne-guigues basis of implications. Discrete Applied Mathematics,
156(11):1994–2003, 2008.

13. John L. Pfaltz. Using concept lattices to uncover causal dependencies in software.
In Proc. Int. Conf. on Formal Concept Analysis, Springer LNAI 3874, pages 233–
247, 2006.

14. Artem Revenko and Sergei O. Kuznetsov. Finding errors in new object intents. In
CLA 2012, pages 151–162, 2012.

15. Uwe Ryssel, Felix Distel, and Daniel Borchmann. Fast computation of proper
premises. In Amedeo Napoli and Vilem Vychodil, editors, International Conference
on Concept Lattices and Their Applications, pages 101–113. INRIA Nancy – Grand
Est and LORIA, 2011.

16. Aaron James Searle. Automatic relative debugging. 2006.

46

17. Gregor Snelting and Frank Tip. Reengineering class hierarchies using concept
analysis. SIGSOFT Softw. Eng. Notes, 23(6):99–110, November 1998.

18. Andreas Zeller. Software debugging course.
https://www.udacity.com/course/cs259.

19. Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Trans. Software Eng., 28(2):183–200, 2002.

47

48

Practical Computing with Pattern Structures in
FCART Environment

Aleksey Buzmakov1,2 and Alexey Neznanov2

1 LORIA (CNRS – Inria NGE – U. de Lorraine), Vandœuvre-lès-Nancy, France
2 National Research University “Higher School of Economics”, Moscow, Russia

aleksey.buzmakov@inria.fr, aneznanov@hse.ru

Abstract. A new general and efficient architecture for working with
pattern structures, an extension of FCA for dealing with “complex” de-
scriptions, is introduced and implemented in a subsystem of Formal Con-
cept Analysis Research Toolbox (FCART). The architecture is universal
in terms of possible dataset structures and formats, techniques of pattern
structure manipulation.

Keywords: Formal Concept Analysis, Pattern Structures, Software

Introduction

FCART1 is a specialized software for data analysis by means of Formal Con-
cept Analysis (FCA) and related methods aiming at processing an arbitrary
dataset [1]. FCA processes a binary context to a concept lattice, which can be
very useful for “gold mining” – obtaining a new knowledge. However, datasets
are unlikely kept in the binary way where an object is described as a set of bi-
nary attributes it possesses. To deal with this problem different kinds of scalings
can be applied to a dataset, converting it to a binary context. In some cases
it can be slow or meaningless. Pattern structures (PSs) is an extension of FCA
dealing with “complex” data [2]. However, just a couple of applications of PSs
are available for the community and, moreover, neither of them are able to work
with an arbitrary PS. Thus, we introduce a generalized approach to PSs within
FCART.

The paper is organized as follows. Section 1 defines FCA and PSs. The next
section describes the overall PS processing within FCART, divided into logical
submodules of the approach. Finally, the paper is concluded before program
interfaces of different modules are given.

1 FCA and Pattern Structures

Formal concept analysis (FCA) [3] is a mathematical formalism having many
applications in data analysis. It process a binary context (a triple (G,M, I)

1 http://ami.hse.ru/issa/Proj_FCART

49

where G is a set of objects, M is a set of attributes and I ⊆ G×M is a relation
between them) into a concept lattice. Pattern structures (PSs) is a generalization
of FCA for dealing with complex structures, such as sequences or graphs [4]. As
it is a generalization it is enough to introduce only PSs.

Definition 1. A PS is a triple (G, (D,u), δ), where G is a set of objects, (D,u)
is a complete meet-semilattice of descriptions and δ : G→ D maps an object to
the description.

The lattice operation in the semilattice (u) corresponds to the similarity
between two descriptions d1 and d2, i.e. the description which is common between
d1 and d2. Standard FCA can be presented in terms of PSs in the following way.
The set of objects G remains, while the semilattice of descriptions is (℘(M),∩),
where ℘(M) is a powerset of M , and, thus, a description is a set of attributes.
The similarity operation corresponds to the set intersection, i.e. the similarity is
the set of common attributes. If x = {a, b, c} and y = {a, c, d} then xuy = x∩y =
{a, c}. The mapping δ : G→ ℘(M) is given by, δ(g) = {m ∈M | (g,m) ∈ I}.

The Galois connection for a PS (G, (D,u), δ) between the set of objects and
the semilattice of descriptions is defined as follows:

A� :=
l

g∈A
δ(g), for A ⊆ G

d� := {g ∈ G | d v δ(g)}, for d ∈ D,

where the partial order (or the subsumption order) on D is defined w.r.t. the
similarity operation u: c v d⇔ c u d = c, and c is subsumed by d.

Definition 2. A pattern concept of a PS (G, (D,u), δ) is a pair (A, d) where
A ⊆ G and d ∈ D such that A� = d and d� = A, A is called a concept extent
and d is called a concept intent.

As in the standard case of FCA, a pattern concept corresponds to the max-
imal set of objects A whose description subsumes the description d, while there
is no e ∈ D, subsuming d, i.e. d v e, describing every object in A. The set of all
concepts can be partially ordered w.r.t. partial order on the extents (dually, the
intents by v), within a concept lattice.

Example 1. PSs are successfully used for interval data [5]. For example, in gene
expression data every gene is described by its expression value in different sit-
uations. The meet-semilattice (Dips,uips) includes vectors of intervals. An ex-
ample of an interval PS is given by δ-function in Table 1. The description of g1
is g�1 = 〈[1, 3]; [3, 5]; [2, 4]〉. The description materializes the fact that the gene
expression in situations m1, m2, m3 are within the corresponding intervals. The
similarity operation (uips) between two interval descriptions g�1 and g�2 is the
component-wise convex hull of intervals. Thus, g�1 ug�2 = 〈[1, 7]; [3, 6]; [2, 5]〉. The
interval pattern concept lattice resulting from this PS is shown in Figure 1 (* is
a special description subsuming anything).

50

Example 2. Given a dataset with objects described by elements of poset P ,
e.g. sequences (w.r.t sequence-subsequence relation) or graphs (w.r.t. subgraph
isomorphism relation), a corresponding PS can be defined in the following way.
The semilattice (D,u) based on poset P is a subset of the powerset of P , D ⊆
℘(P), such that if d ∈ D contains an element p ∈ P then all its “subelements” x
should be included into d, ∀p ∈ d, @x ≤ p : x /∈ d, and the semilattice operation
is the set intersection for two sets of elements. Given two patterns d1, d2 ∈ D,
the set intersection operation ensures that if an element p belongs to d1 u d2
then any subsequence of p belongs to d1 u d2 and, thus, (d1 u d2) ∈ D.

However, the set of all possible “subelements” for a given pattern can be
rather large. Thus, it is more efficient and representable to keep a pattern d ∈ D
as a set of all maximal elements d̃, d̃ = {p ∈ d | @x ∈ d : x ≥ p} . Note that
representing a pattern by the set of all maximal elements allows for an efficient
implementation of the intersection “u” of two patterns.

m1 m2 m3

g1 [1, 3] [3, 5] [2, 4]
g2 [5, 7] [4, 6] [2, 5]
g3 [1, 9] [2, 7] [6, 6]

Table 1: An Interval PS.

({g1} ; 〈[1, 3]; [3, 5]; [2, 4]〉) ({g2} ; 〈[5, 7], [4, 6], [2, 5]〉) ({g3} ; 〈[1, 9], [2, 7], [6, 6]〉)

({g1, g2} ; 〈[1, 7]; [3, 6]; [2, 5]〉)

({g1, g2, g3} ; 〈[1, 9], [2, 7], [2, 6]〉)

(∅; ∗)

Fig. 1: The concept lattice for the PS in Table 1.

PSs can be hard to process due to the usually large number of concepts in the
concept lattice and the complexity of the similarity operation (think for instance
of the graph isomorphism problem). Moreover, a pattern lattice can contain a
lot of irrelevant patterns for an expert. Projections of PSs “simplify” to some
degree the computation and allow one to work with a reduced description. In fact,
projections can be considered as constraints (or filters) on patterns respecting
certain mathematical properties, ensuring that the concepts in the projected
lattice have correspondence to the original ones [4].

A projection ψ : D → D is an operator, which is monotone (x v y ⇒ ψ(x) v
ψ(y)), contractive (ψ(x) v x) and idempotent (ψ(ψ(x)) = ψ(x)). A projection
preserves the semilattice operation u as follows. Under a projection ψ, a PS
(G, (D,u), δ) becomes the projected PS ψ((G, (D,u), δ)) = (G, (D,u), ψ ◦ δ).
The concepts of a projected pattern structure have a “similar” concept in the
initial pattern structure [4].

2 Pattern Structures Techniques

As a PS is an abstract mathematical object, any software aiming at the PS
realization should either prepare several different PSs, such as PSs based on
intervals or graphs, or give to a user an opportunity to add arbitrary PSs to the
software. Our goal is to process any PSs and in this case one should decide how
an arbitrary semilattice can be introduced by a user. It is not possible in some
cases to enumerate all elements of a semilattice. For example, the semilattice of

51

Function CloseByOne(Ext, Int)
Data: (G, (D,u), δ), extent Ext and intent Int of a concept.
Result: All canonical ancestor concepts of the concept (Ext, Int).
foreach S ⊆ G, S � Ext do

NewInt←− ddd
g∈S

δ(g) ; /* u - intersection */

NewExt←− {g ∈ G | NewInt vvv δ(g)}; /* v - subsumption */

if IsCanonicExtension(Ext, NewExt) then
SaveConcept((NewExt,NewInt));
CloseByOne(NewExt,NewInt);

CloseByOne(∅, >); /* Find all concepts... */

Algorithm 1: The modified version of CbO for PS processing.

graphs is infinite and even if one would like to select a finite subset of it, the
subset should be significantly large in order to be useful in real-life applications.
Another option is the constructive way for defining a semilattice, i.e. one should
be able to keep any element of the given semilattice, to compute the semilattice
operation between two elements of the semilattice and to check equality of two
elements. Although the subsumption relation on a semilattice can be checked
as c v d ⇔ c u d = c, in many cases it can be more efficient to check the
subsumption relation directly. Later we discuss how semilattices are processed
more carefully.

But how can we build a concept lattice from a given PS? Many state-of-the-
art algorithms can be slightly modified in such a way that avoid enumeration of
attributes, i.e. performing only the set intersection operation and checking the
subset relation without naming the attributes. This modification allows to fur-
ther substitute the set intersection by the corresponding semilattice operations
and to compute the concept lattice from a PS. Algorithm 1 shows the listing of
the modified CbO [6] algorithm. Moreover, modified algorithms can easily process
standard FCA by introducing the described above powerset semilattice. Since
PSs can be processed with a number of different algorithms, we should allow to
a user to introduce any algorithms he wants.

The following parts, called plugins, are introduced in FCART:

– A constructive semilattice description;
– Extent and Intent storages, managing extents and intents of a lattice;
– A concept lattice builder working with any available semilattices.

Now we can build a concept lattice from any PSs, but we still do not know
how to process the different element nature of a semilattice, i.g. how to load or
save it. These problems are discussed in the following subsection as well as the
processing of projections of PSs.

2.1 Input and Output Data Formats

For the purposes of keeping and exchanging of patterns format JSON is chosen
because it allows to serialize nearly any kind of data, is standardized 1, has low

1 http://www.json.org/

52

{
“Count”: 3,
“Inds”:[2, 5, 8]

}
(a) Indices array.

{
“Count”: 3,
“Inds”::[2.3, 5.5, 8.1]

}
(b) Real numbers array.

{[
{ “NodesCount” : 2 },
{ “Nodes” : [
{ “Int” : 0, “Ext” : 0 },
{ “Int” : 1, “Ext” : 1 }

]},
{ “ArcsCount” : 1 },
{ “Arcs” : [
{ “S” : 0, “D” : 1 },

]},
]}

(c) Concept Lattice.

Fig. 2: JSON formats for object and semilattice element descriptions.

parsing overhead, and is more compact than XML. We introduce the following
general datatypes: primitives (numbers, strings), sets, ordered sets, rooted trees
and general structures, i.e. graphs. But what kind of data we need to process?
First a dataset from an external source should be converted to JSON and put
into an internal collection. This imported dataset corresponds to a δ-function
for a PS. Since the target semilattice can be a projection, the descriptions in
this semilattice can be different from the descriptions in the imported dataset.
For example, an object description can be a graph, while the projection can be a
chain which can be kept in more efficient and tractable structure than a general
graph. Thus we have two datatypes, one is used for a δ-function and the second
is for a semilattice object. To allow for a plugin work with only the descriptions
this plugin can work, the plugin specifies the external and internal datatypes
by unique ID of that datatype. Figure 2 exemplifies indexes array, which can be
used to keep sets, and numbers array, which can be used as the initial description
of interval PS.

The next entity for exchanging between FCART and a plugin is a concept
lattice. In our case it is a set of concepts with several edges. The concepts extents
and intents are referred by special indexes, which come from extent and intent
storages. The simple lattice is exemplified in Figure 2c.

Finally, a plugin can have its own running settings, which are given in an
arbitrary JSON. For example, this properties allows us to realize a class of pro-
jections rather than a given projection, i.g. the projections of a graph to all its
subgraphs of no more then k vertices, where k is a parameter of the plugin.

2.2 Pattern Manager Plugin

A semilattice (D,u) is given in the constructive way by a plugin called “Pattern
Manager”. The main operations which should be performed by this plugin are
listed in Table 2. The first two properties are description types the plugin can
load from a dataset or process as patterns. Patterns here refers to an internal data
format of patterns known only by this pattern manager. Loading patterns from
a given JSONs, patterns can be intersected or compared. This allows to give a
semilattice in the constructive way without enumerating all possible elements of a

53

lattice. Any patterns can be saved in a JSON of a ‘GetPatternType()’ type. And,
finally, there are three functions which can creates patterns. To remove a pattern
and clear the memory of this pattern, function ‘FreePattern’ is introduced.

2.3 Extent and Intent Storage Plugins

Although Pattern Manager can create a lot of patterns by the intersection or
the loading operations, it is not responsible for memory it creates. Plugin ‘Intent
Storage’ is a special layer which separates the raw representation of a pattern (an
output of a Pattern Manager) and the IDs of intents, which are used in a lattice
builder. Moreover, all patterns should pass through an Intent Storage and thus
it controls memory for patterns. Intent Storage is responsible for the indexes it
creates and, thus, it can be (de)serialized in a unified way in order to preserve
the intents between sessions. Finally, as Intent Storage translates some of its call
to Pattern Manager, we should initialize Intent Storage by the required Pattern
Manager. The functions of Intent Storage are the same as for Pattern Manager
but it should be initialized with a Pattern Manager and can be (de)serialized.

Plugin ‘Extent Storage’ is an analog of Intent Storage but for the extents. We
know exactly what an extent is, and, thus, the additional layer ‘Extent Manager’
is not necessary. To work with extents in the bottom to top strategy we usually
do not require any intersection operations and just add objects to this set. The
interface functions of Extent Storage plugin are shown in Table 3.

2.4 Lattice Builder Plugin

Finally, to build a pattern concept lattice, a special plugin “Lattice Builder” is
introduced. Lattice Builder takes as an arguments Extent and Intent storages
and the path where the result lattice in the describing above format should
be saved. It has three functions: ‘Initialize()’ taking Extent and Intent Storage
plugins; ‘AddObject(ObjID, IntentID)’ taking a unique ID of an object which
should be added to the context with the corresponding description given by its
ID; and finally ‘Build()’ building or postprocessing a lattice and writing it to
the required file. We should remember that there are two types of algorithms for
building a concept lattice: incremental such as AddIntent [7], where after each
addition of an object the new lattice is constructed, and non-incremental such
as CbO [6], where the lattice is constructed for all objects at once. The function
AddObject can be used to construct a lattice in an incremental way by the first
algorithms or to collect a context by the algorithms from the second group.

2.5 Organization of Plugins

To allow the efficient implementation of any plugins, they are kept in a dynamic
link library with a special API, which is called “Plugin System API”. This library
should contain at least three functions listed in Table 4. Function ’GetDescrip-
tion’ return a JSON array 2, with description of every plugin that can be found

2 JSON is selected for plugin data representation by the previously mentioned reasons.

54

in the plugin system. The description contains unique ID of a plugin, type of
the plugin, i.e. Patten Manager, Extent or Intent storage, or LatticeBuilder. Ac-
cording to the type of the plugin it contains the map from a plugin functions to
the functions realized in the library.

Every plugin in a system should implement the functions listed in Table 5.
Which allows to use them in a generalized way. The plugin can describe its
parameters, for example the size of graph in a projection, and then load them
and save them in a described JSON format. Finally, as some plugins can be
initialized by other plugins, a plugin can request another plugin in its description.
The initializing plugin is given to the requester as an ID and FCART has API
for requesting an address of a plugin be the plugin ID and the function name.

Conclusion

Pattern structures is a very general and powerful technique for knowledge ex-
traction form complex object descriptions with perspectives for working with Big
Data. We implemented PSs within an original framework in an efficient and uni-
versal way. Current prototype is presented in FCART software and justifies the
approach. The project is improving taking into account benchmark and profiling
results and requirements of researches.

Acknowledgements: this research received funding from the Basic Research
Program at the National Research University Higher School of Economics (Rus-
sia) and from the BioIntelligence project (France).

References

1. Neznanov, A.A., Ilvovsky, D.A., Kuznetsov, S.O.: FCART: A New FCA-based
System for Data Analysis and Knowledge Discovery. In: Proc. of workshop for FCA
Tools and Applications (at ICFCA’2013). (2013)

2. Kuznetsov, S.: Fitting Pattern Structures to Knowledge Discovery in Big Data. In
Cellier, P., Distel, F., Ganter, B., eds.: Formal Concept Analysis SE - 17. Volume
7880 of Lecture Notes in Computer Science. Springer (2013) 254–266

3. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. 1st
edn. Springer, Secaucus, NJ, USA (1997)

4. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In Delugach,
H., Stumme, G., eds.: Conceptual Structures: Broadening the Base SE - 10. Volume
2120 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2001)
129–142

5. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expres-
sion data with pattern structures in formal concept analysis. Information Sciences
181(10) (2011) 1989 – 2001

6. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects in a
finite semi-lattice. Automatic documentation and Mathematical linguistics 27(5)
(1993) 11–21

7. Merwe, D.V.D., Obiedkov, S., Kourie, D.: AddIntent: A new incremental algorithm
for constructing concept lattices. In Goos, G., Hartmanis, J., Leeuwen, J., Eklund,
P., eds.: Concept Lattices. Volume 2961. Springer (2004) 372–385

55

Appendix

Function Description

ID=GetObjectType() Returns the JSON type of an object

ID=GetPatternType() Returns the JSON type of the patterns it works with

Pttrn=Preprocess(JSON) Loads JSON description of an object and converts it to the
internal pattern type

Pttrn = a u b Computes semilattice operation between patterns a and b.

{True, False}=a v b Checks if pattern a is subsumed by pattern b.

{True, False}=(a == b) Checks if one pattern is equal to another pattern.

Pttrn=LoadPattern()
JSON=SavePattern(a)

Convert the internal pattern to/from the JSON with type
GetPatternType().

FreePattern(a) Free memory allocated for pattern a

Table 2: Main functions of Pattern Manager plugin API.

Function Description

ID=Clone(ID) Clones the extent with ID. ID==-1 is a special empty extent

AddObject(ID, objID) Add the object objID to the extent ID

Size=Size(ID) Returns the number of objects in the extent ID

ObjID=
LastAddedObject(ID)

Returns the last added object to the extent ID.

ID=LoadExtent(JSON)
JSON=SaveExtent(ID)

Loads and saves the extent ID form/to JSON.

Table 3: Main functions of Extent Storage plugin API.

Function Description

Init() Initialization of a library

Done() Deinitialization of a library

JSON=GetDescription() Returns the description of all the plugins that the given plu-
gin system support

Table 4: Functions of Plugin System API.

Function Description

Create() Creation of a plugin object

Destroy() Destruction of a plugin object

DescribeParams() Describes what kind of params the plugin can have in both
human-readable and machine readable forms

Load/Save Params() Load or save params in the form described by ‘De-
scribeParams’

Table 5: Main functions of common plugin API.

56

Towards Knowledge Structuring of Sensor Data Based on

FCA and Ontology

Peng Wang
1
, Wenhuan Lu

1
, Zhaopeng Meng

1
, Jianguo Wei

2 *

and Françoise Fogelman-Soulié
3

1School of Computer Software, Tianjin University, Tianjin 300072, China
2School of Computer Science and Technology, Tianjin University, Tianjin 300072, China

3KXEN SAS, 25 quai Galliéni, 92150 Suresnes, France

{wangp, wenhuan, mengzp, jianguo}@tju.edu.cn, {francoise}@kxen.com

Abstract

With the rapid development of sensor technology, sensor web is increasingly found in

all kinds of fields. Modeling the sensor web is a key issue if one wants to achieve

efficient sensors network interconnection, sensors resources access, sensors mainte-

nance, etc. Such a model requires various stages: first, ontologies must be defined to

represent knowledge of the application domain; then, modeling techniques such as

semantics and data mining can be used to predict sensor defects, access, etc. These

stages exploit the observed sensor data, which may be very large. Automating the

ontology extraction process is key in the face of data volumes and domains variability.

In this paper, we focus on the first stage of designing the sensor equipment on-

tology, by using the Formal Concept Analysis approach. This ontology will allow

sharing knowledge on the sensor equipment, reasoning on its spatial, temporal, and

thematic characteristics and constraining further models for better performances (this

last point will not be described in this paper and is left for further research). FCA allows

extracting the ontology on the basis of observed sensors data: this ontology will directly

model concepts and concept hierarchy, through their properties rather than the de-

signer. We illustrate the approach through a small dataset from a drilling platform

scenario. First, we initialize an empty set of concepts and properties; we can also get

some sensor observations and properties. Second, we create a concept table and add

concepts and properties to that table. Third, we use FCA to visualize the lattice of

concepts with their properties. Finally, based on the visualization, the designer can

assess the ontology or its parts: he can modify it by adding or removing a concept or a

property, assigning a property to a concept or removing a property from a concept, until

the ontology matches his knowledge domain and fulfills its objective.

By using FCA to design sensor equipment ontology in the drilling platform do-

main, we show that more implicit concepts and their relationships can be represented

for a web sensor network. We believe that this approach can lead to better ontology

than previous methods of building semantic sensor web. This preliminary work will be

further extended to include the other three ontologies (sensor network, sensor data and

sensors), based on a larger data set from a real-world drilling platform.

* Corresponding Author

57

58

