Г.И. Левиев М.Р. Трунин	Физика:		
	научись решат		
Учебное пособие	задачи сам		

УДК 53(075.3) ББК 22.3 Л36

Рецензенты:

д-р физ.-мат. наук, профессор базовой кафедры физики конденсированных сред при Институте физики твердого тела им. Ю.А. Осипьяна РАН факультета физики НИУ ВШЭ, чл.-корр. РАН В.Д. Кулаковский;

д-р физ.-мат. наук, профессор, заведующий кафедрой общей физики МФТИ A.B.~Mаксимычев

Левиев, Г. И., Трунин, М. Р. Физика: научись решать задачи сам Л36 [Текст]: учебное пособие / Г. И. Левиев, М. Р. Трунин; Нац. исслед. ун-т «Высшая школа экономики». — М.: Изд. дом Высшей школы экономики, 2022. — 688 с. — 600 экз. — ISBN 978-5-7598-2318-6 (в пер.). — ISBN 978-5-7598-2406-0 (e-book).

Учебное пособие представляет собой сборник оригинальных задач, составленный в полном соответствии с учебной программой школьного курса физики. Особенность издания — в процедуре решения задач, развивающей у школьников способность самостоятельно думать. Большая часть задач составлена на основе реальных наблюдений и ситуаций, что позволяет ученику легко представить себе условие. Первая часть пособия содержит основные формулы и определения по темам, условия задач и указания к их решению, в которых разбирается «физика» задачи и обсуждаются необходимые для решения формулы из краткой сводки в начале главы. Такое «почти самостоятельное» решение задач особенно полезно в начале подготовки, когда школьнику нужно преодолеть неуверенность в собственных силах. По мере его вовлечения в предметный тематический блок сложность и разнообразие задач повышаются, вплоть до высшего уровня физико-технических разработок, отмеченных недавними Нобелевскими премиями. Во второй части пособия приведен подробный разбор каждой задачи.

Издание ориентировано на целенаправленную подготовку к выпускному единому государственному экзамену (ЕГЭ) в школе и дополнительному вступительному испытанию (ДВИ) при поступлении в вуз инженерно-физического профиля. Оно может быть интересно и для преподавателей, поскольку содержит указания на некоторые неточности в известных задачниках по физике для школы.

УДК 53(075.3) ББК 22.3

Опубликовано Издательским домом Высшей школы экономики http://id.hse.ru

doi:10.17323/978-5-7598-2318-6

ISBN 978-5-7598-2318-6 (в пер.) ISBN 978-5-7598-2406-0 (е-book) © Левиев Г.И., Трунин М.Р., 2022

ОГЛАВЛЕНИЕ

Пp	едисл	ювие		7
Вве	едени	е. Век	торы в физике	9
	Сло	жение	векторов	9
	Опр	оекци	и вектора на ось	11
	Умн	ожени	е векторов	12
			•	
TT A	CTE	. 1		
		_	ПОДСКАЗКИ	17
1.	Mex	аника		19
	1.1.		вные формулы и определения	
			Кинематика	
			Динамика	
		1.1.3.	Статика	28
		1.1.4.	Законы сохранения	31
		1.1.5.	Механические колебания и волны	34
	1.2.	Задач	ш	37
		1.2.1.	Кинематика	37
		1.2.2.	Динамика	53
		1.2.3.	Статика	62
		1.2.4.	Законы сохранения	74
		1.2.5.	Механические колебания и волны	81
	1.3.	Указа	ния к решению задач	88
		1.3.1.	Кинематика	88
		1.3.2.	Динамика	95
		1.3.3.	Статика	99
		1.3.4.	Законы сохранения	107
		1.3.5.	Механические колебания и волны	112
2.	Мол	іекуляр	рная физика и термодинамика	118
	2.1.	Осно	вные формулы и определения	118
			Молекулярная физика	
		2.1.2.		

	2.2.	Задач	и	124
		2.2.1.	Молекулярная физика	124
		2.2.2.	Термодинамика	130
	2.3.	Указа	ния к решению задач	141
		2.3.1.	Молекулярная физика	141
		2.3.2.	Термодинамика	144
3.	Электродинамика			149
	3.1. Основные формулы и определения			149
		3.1.1.		
		3.1.2.	Постоянный ток	
		3.1.3.		
		3.1.4.	Электромагнитная индукция	160
		3.1.5.		
		3.1.6.	Оптика	165
	3.2.	Задач	и	169
		3.2.1.	Электрическое поле	169
		3.2.2.	Постоянный ток	
		3.2.3.		
		3.2.4.	Электромагнитная индукция	208
		3.2.5.		
		3.2.6.		
	3.3.	Указа	ния к решению задач	244
		3.3.1.		
		3.3.2.	Постоянный ток	252
		3.3.3.	Магнитное поле	259
		3.3.4.	Электромагнитная индукция	264
		3.3.5.	Электромагнитные колебания	268
		3.3.6.	Оптика	275
4.	Осн	овы сп	ециальной теории относительности	284
	4.1.	. Основные формулы и определения		284
	4.2.	Задач	ш	286
	4.3.	 Указания к решению задач 		
5.	Ква		физика и астрофизика	
			вные формулы и определения	
			Корпускулярно-волновой дуализм	

		5.1.2. Физика атома	294
		5.1.3. Физика атомного ядра	295
		5.1.4. Элементы астрофизики	296
	5.2.	Задачи	297
		5.2.1. Корпускулярно-волновой дуализм	297
		5.2.2. Физика атома	303
		5.2.3. Физика атомного ядра	
		5.2.4. Элементы астрофизики	309
	5.3.	Указания к решению задач	316
		5.3.1. Корпускулярно-волновой дуализм	
		5.3.2. Физика атома	
		5.3.3. Физика атомного ядра	
		5.3.4. Элементы астрофизики	323
\mathbf{q}_{A}	СТЬ	2	
PE	ШЕ	НИЕ ЗАДАЧ	325
6.	Mex	аника	327
	6.1.	Кинематика	327
	6.2.	Динамика	365
	6.3.		
	6.4.		
		Механические колебания и волны	
7.		пекулярная физика и термодинамика	
	7.1.		
		Термодинамика	
8.		ктродинамика	
0.		Электрическое поле	
	8.2.	Постоянный ток	
	8.3.	Магнитное поле	
	8.4.	Электромагнитная индукция	
	8.5.	Электромагнитные колебания	
	8.6.	Оптика	606

Оглавление

9.	Основы специальной теории относительности	. 650
10.	Квантовая физика и астрофизика	661
	10.1. Корпускулярно-волновой дуализм	661
	10.2. Физика атома	671
	10.3. Физика атомного ядра	. 678
	10.4. Элементы астрофизики	. 682

ПРЕДИСЛОВИЕ

Пособие «Физика: научись решать задачи сам» ориентировано на целенаправленную подготовку к Единому государственному экзамену (ЕГЭ) по физике в школе и дополнительному вступительному испытанию (ДВИ) при поступлении на физический факультет некоторых университетов. Серьезная самостоятельная работа с пособием позволит школьнику не только набрать высокие баллы на ЕГЭ и поступить в желаемый университет, но и плавно перейти к изучению там современного курса физики.

Ежегодно около 15—17% выпускников школ сдают ЕГЭ по физике. Встает вопрос о наиболее эффективной технологии подготовки к ЕГЭ и ДВИ в условиях ограниченного времени. Сегодня имеются рынок репетиторов, множество пособий для подготовки к ЕГЭ по физике, есть сайты в Интернете, где приведены тысячи задач с решениями. Это, безусловно, полезные ресурсы, и их можно использовать в процессе подготовки. Но как научиться самому решать задачи? Ведь умение самостоятельно работать и принимать обдуманные решения — ценное качество, обладатели которого обычно и достигают карьерного успеха. Взявшись за данное пособие, у вас появляется возможность преодолеть неуверенность в собственных силах и научиться быстро решать задачи, в том числе непростые, если следовать предложенной в пособии траектории решения.

Первая часть состоит из пяти глав, включающих 14 тематических блоков, которые охватывают все разделы школьного курса физики. Каждая глава начинается краткой сводкой основных формул и определений, используемых при решении задач по теме. Нумерация формул и определений соответствует порядку следования тем в блоках данной главы. В каждом тематическом блоке содержится несколько десятков стандартных и оригинальных задач, взятых из реальных ситуаций, что позволяет школьнику легко представить себе условие задачи. После каждой задачи приводится только численный ответ. Если этот ответ сразу не получается, нужно заглянуть в раздел «Указания к решению задач», который находится в конце каждой главы. В нем к каждой задаче разбирается физическая ситуация и приводится ссылка на необходимые для ее решения формулы в начале главы (например, «использовать 2-й закон Ньютона в импульсной форме (1.1.4.2)). Таким образом, сначала вы пробуете понять сюжет и физический смысл задачи, потом выстраиваете логику ее решения и переводите эту последовательность мысленных действий на математический язык, ну и в конечном итоге получаете ответ. Если он не сходится с приведенным ответом, сравните ход своих рассуждений и вычислений с предлагаемыми в указании. Такое «почти самостоятельное» решение задач особенно полезно в начале подготовки, когда нужно преодолеть неуверенность в собственных силах. Поскольку в нынешних условиях школьник не может позволить себе роскошь обдумывать задачу слишком долго, если за 20—30 мин ему не удалось найти ответ даже с помощью подсказки в указаниях, тогда уже следует заглянуть во вторую часть пособия, где приведены подробные решения всех задач. Для закрепления полезно также отметить номер задачи, вызвавшей затруднения, и вернуться к ней через одну-две недели.

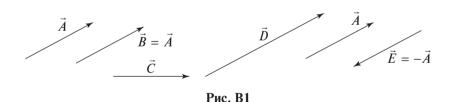
Для преподавателей физики в школе пособие может быть интересно тем, что в нем обращается внимание на некоторые распространенные ошибки в известных задачниках по физике для школы.

ВВЕДЕНИЕ. ВЕКТОРЫ В ФИЗИКЕ

Векторы как удобная система обозначений и правила работы с ними появились в середине XIX в. Основатели физики — Ньютон, Галилей — не использовали векторы.

Для наших целей можно смотреть на векторы как на отрезки со стрелкой на одном конце, правила обращения с которыми придуманы, как придуманы правила игры в шахматы, например, конь ходит буквой « Γ ». Разница между этими «придумками» в том, что шахматные правила не используются нигде, кроме шахмат, а правила обращения с векторами отражают поведение физических величин — сил, скоростей, напряженностей полей и упрощают описание физической картины.

Вектор характеризуется длиной отрезка (модулем вектора) и направлением. Два вектора \vec{A} и \vec{B} считаем равными и записываем $\vec{A} = \vec{B}$, если совпадают их модули A = B и направления. Буква со стрелкой обозначает вектор, а та же буква без стрелки — его модуль, положительное число. На рис. В1 модуль вектора \vec{C} равен модулю вектора \vec{A} , т.е. C = A. Но это не равные векторы, $\vec{C} \neq \vec{A}$, из-за того, что у них разные направления. Вектор \vec{D} направлен, как вектор \vec{A} , но его модуль больше, чем модуль вектора \vec{A} , и потому $\vec{D} \neq \vec{A}$. Вектор \vec{E} , модуль которого такой же, как у вектора \vec{A} , а направление противоположное, считаем связанным с \vec{A} соотношением $\vec{E} = -\vec{A}$.



Сложение векторов

Сформулируем основное правило, благодаря которому векторы находят применение в физике. Вектор \vec{C} называется суммой вектора \vec{A} и вектора $\vec{B}, \vec{C} = \vec{A} + \vec{B}$, если он построен, как на рис. В2, a (правило параллелограмма), или, что эквивалентно, как на рис. В2, δ (правило треугольника).

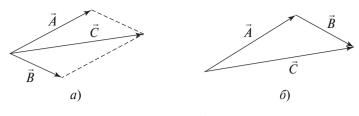


Рис. В2

Вектор \vec{D} , равный разности вектора \vec{A} и вектора \vec{B} , определяется как сумма вектора \vec{A} и вектора ($-\vec{B}$): $\vec{D} = \vec{A} - \vec{B} = \vec{A} + (-\vec{B})$. Он находится как вторая диагональ параллелограмма, построенного на векторах \vec{A} и \vec{B} (рис. В3). Стрелка вектора разности ставится около вектора-уменьшаемого (правило «уколи уменьшаемое»).

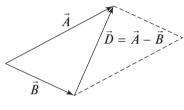


Рис. В3

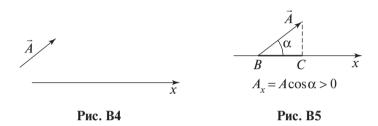
Приведем пример использования векторов в физике. Два трактора равномерно перемещают по земле контейнер с помощью тросов. Угол между тросами $\alpha = 60^{\circ}$. В тросах имеются встроенные динамометры, которые показывают натяжения тросов 3 кН и 4 кН соответственно. Спрашивается, можно ли заменить два трактора одним, обеспечив такое же перемещение контейнера? И если можно, то как должен быть ориентирован единственный трос от одного трактора и каково натяжение этого троса? Ответ на поставленные физические вопросы дает эксперимент, который показывает, что «работает» правило сложения векторов. То есть нужно представить силы как векторы, направленные вдоль тросов, с модулями 3 кН и 4 кН. Дальше найти результирующий вектор по правилу сложения векторов, т.е. модуль их суммы, равный длине диагонали параллелограмма, и направление вдоль этой диагонали как направление движения троса. Динамометр, встроенный в этот трос, покажет величину натяжения, соответствующую длине диагонали, — около 6 кН, согласно теореме косинусов.

Этот пример показывает, что правило сложения векторов не только соответствует нашему воображению, как правила игры в шахматы, но

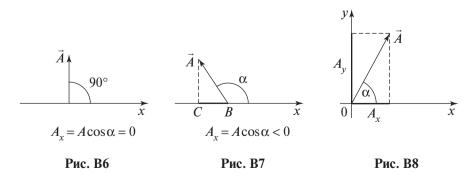
и подстроено и подогнано так, чтобы описывать реальные эксперименты. Удивительно, что описание с помощью векторов удобно для разных физических величин — сил, перемещений, скоростей, напряженностей электрического и магнитного полей.

О проекции вектора на ось

Пусть имеются вектор \vec{A} и координатная ось x (рис. B4). Векторы, о которых мы говорим, свободные, т.е. их можно перемещать параллельно самим себе. Переместим вектор \vec{A} так, чтобы его начало оказалось на оси x, и опустим перпендикуляр из конца вектора на ось (рис. B5).



Проекцией A_x вектора \vec{A} на ось x называют величину $A_x = A\cos\alpha$. Если угол α острый, косинус положительный, величина проекции положительная и равна длине отрезка $BC = A_x$. В случае прямого угла $\alpha = 90^\circ$ проекция вектора на ось обращается в ноль (рис. B6). При углах из интервала $90^\circ < \alpha < 270^\circ$ косинус отрицательный и проекция тоже отрицательная (рис. B7). Во многих задачах приходится брать проекции вектора сразу на две оси, как правило, перпендикулярные друг другу, хотя и не всегда (рис. B8). Иногда удобнее вместо двух проекций, т.е. двух алгебраических чисел, соответствующих данному вектору, представить вектор как сумму двух взаимно перпендикулярных векторов — говорят «разложить вектор на лве составляющие».



Например, бывает полезно силу тяжести $m\vec{g}$ тела, лежащего на наклонной плоскости, представить как сумму двух сил: скатывающей силы $\vec{F}_{\rm ck}$, направленной вдоль наклонной плоскости вниз, и силы нормального давления \vec{N} , направленной перпендикулярно наклонной плоскости: $m\vec{g} = \vec{F}_{\rm ck} + \vec{N}$ (рис. В9).

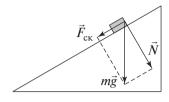


Рис. В9

Умножение векторов

Векторы можно не только складывать и вычитать, но и умножать друг на друга. Мы рассмотрим два способа умножения векторов.

1. Скалярное произведение векторов. По определению скалярным произведением двух векторов \vec{B} и \vec{C} называется число A (не вектор, а скаляр), равное произведению модулей векторов B и C и косинуса угла α между векторами:

$$A = \vec{B} \cdot \vec{C} \equiv B \cdot C \cdot \cos \alpha$$
.

Из определения видно, что скалярное произведение может быть положительным, отрицательным или равным нулю. В физике с помощью скалярного произведения определяют работу силы. Если при действии на тело постоянной силы \vec{F} оно переместилось на величину \vec{s} , то работа A силы при этом перемещении по определению равна $A \equiv Fs\cos\alpha$. Угол α здесь — это угол между векторами \vec{F} и \vec{s} .

Скалярное произведение векторов можно выразить не через модули и угол, а через проекции векторов на оси прямоугольной (декартовой) системы координат:

$$A = \vec{B}\vec{C} = BC\cos\alpha = B_xC_x + B_yC_y + B_zC_z.$$

2. Векторное произведение. Векторным произведением \vec{v} и \vec{B} называется вектор $\vec{F} = \vec{v} \times \vec{B}$, модуль которого равен произведению модулей v и B и синуса угла α между этими векторами: $F \equiv v B \sin \alpha$. По определению вектор \vec{F} направлен перпендикулярно обоим векторам-сомножителям \vec{v} и \vec{B} . При этом, если смотреть со стороны конца вектора-произведения \vec{F} ,

ближайший поворот от первого сомножителя \vec{v} ко второму сомножителю \vec{B} должен проходить против часовой стрелки (рис. B10).

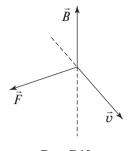


Рис. В10

В физике векторное произведение используется в механике, например, для описания моментов сил и импульсов, в электродинамике, например, для выражения силы Лоренца $\vec{F}_{\Pi} = q \cdot \vec{v} \times \vec{B}$. Если при знакомстве с силой Лоренца не используется представление о векторном произведении векторов, то для указания направления силы Лоренца вводят правило левой руки. Любой вектор \vec{A} можно задать с помощью его проекций на заданную систему координатных осей. В общем случае нужно указать три проекции, но если вектор лежит в плоскости, проведенной через оси координат x, y, то для характеристики вектора хватает двух проекций — A_{v}, A_{v} .

В некоторых задачах удобно ввести единичные безразмерные векторы, направленные вдоль осей координат, — орты. Стандартные обозначения ортов: \vec{i} для единичного вектора вдоль оси x и \vec{j} для орта, направленного вдоль оси y (рис. В11). Если используется и третья ось координат z, орт вдоль этой оси обозначается \vec{k} .

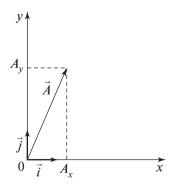


Рис. В11

Произвольные векторы \vec{A} , \vec{B} с помощью ортов можно записать так:

$$\vec{A} = A_x \vec{i} + A_y \vec{j}, \quad \vec{B} = B_x \vec{i} + B_y \vec{j}.$$

Найдем скалярное произведение $\vec{A}\vec{B}$ векторов:

$$\vec{A}\vec{B} = (A_x\vec{i} + A_y\vec{j})(B_x\vec{i} + B_y\vec{j}) = A_x\vec{i}B_x\vec{i} + A_x\vec{i}B_y\vec{j} + A_y\vec{j}B_x\vec{i} = A_y\vec{j}B_y\vec{j}.$$
(1)

Ответ содержит скалярные произведения ортов \vec{ii} , \vec{jj} , \vec{ij} . Орты перпендикулярны друг другу, поэтому скалярное произведение двух разных ортов равно нулю:

$$\vec{ij} = ij\cos 90^\circ = 0. \tag{2}$$

Скалярные «квадраты» ортов, т.е. произведения одинаковых векторов, равны единице:

$$\vec{i}\vec{i} = 1 \cdot 1 \cdot \cos 0^{\circ} = 1, \quad \vec{j}\vec{j} = 1 \cdot 1 \cdot \cos 0^{\circ} = 1.$$
 (3)

С учетом (2), (3) для скалярного произведения (1) имеем

$$\vec{A}\vec{B} = A_x B_x + A_y B_y. \tag{1a}$$

Вывод. Для скалярного произведения векторов получено выражение через проекции векторов (1a). Зная проекции, можно найти скалярное произведение векторов, не рассматривая угол между ними.

Примеры

- **1.** Модули векторов A, B, C на рис. В12 равны 45, 90, 120 соответственно:
- а) чему равен модуль вектора \vec{D} , равного сумме этих векторов $\vec{D} = \vec{A} + \vec{B} + \vec{C}$?
 - б) чему равны углы α и β?
 - в) чему равно скалярное произведение $\vec{A}\vec{C}$ векторов \vec{A} и \vec{C} ?
- г) чему равен модуль вектора \vec{F} , равного векторному произведению $\vec{A} \times \vec{C} = \vec{F}$ векторов \vec{A} и \vec{C} ?

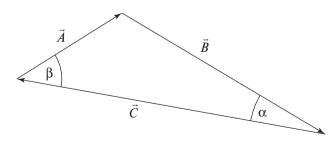


Рис. В12

д) чему равна площадь треугольника, построенного на векторах \vec{A} , \vec{B} . \vec{C} ?

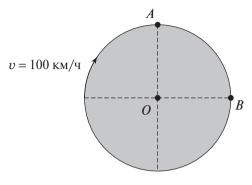


Рис. В13

2. Автомобиль едет по круговой дорожке вокруг стадиона со скоростью v=100 км/ч (рис. В13). Нарисовать вектор разности скоростей $\vec{v}_B-\vec{v}_A$ в точках A и B и вычислить модуль этого вектора.

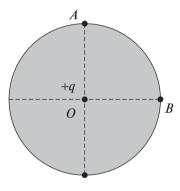


Рис. В14

- **3.** На столе в точке O расположен точечный электрический заряд +q (рис. B14). Нарисовать векторы \vec{E}_A , \vec{E}_B , \vec{E}_C напряженности поля в точках A, B, C и вектор суммы этих векторов.
- **4.** Магнитное поле направлено перпендикулярно плоскости рисунка от нас (рис. B15). Электрон и альфа-частица влетают в поле с одинаковыми скоростями \vec{v} в плоскости рисунка. Изобразить векторы сил Лоренца, действующих на электрон и на альфа-частицу.

Рис. В15

Часть 1

ЗАДАЧИ И ПОДСКАЗКИ

1. МЕХАНИКА

1.1. Основные формулы и определения

1.1.1. Кинематика

1.1.1.1. *Систему отсчета* образуют тело отсчета, жестко связанная с ним система координатных осей и часы (рис. 1.1).

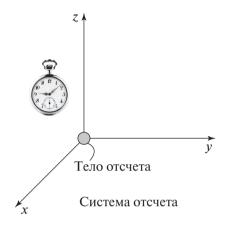


Рис. 1.1

1.1.1.2. Положение тела (материальной точки) в пространстве можно задавать координатами x(t), y(t), z(t), или радиус-вектором $\vec{r}(t)$ (рис. 1.2). Разность $\Delta \vec{r} \equiv \vec{s} \equiv \vec{r}(t + \Delta t) - \vec{r}(t)$ называется перемещением тела \vec{s} .

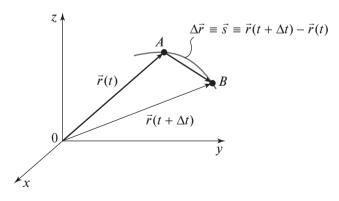


Рис. 1.2

Этой же буквой s часто обозначают nymb mena — длину пройденного участка траектории. Путь — скалярная положительная величина, со временем может только возрастать или оставаться постоянной, в отличие от модуля вектора перемещения, который может и уменьшаться. Знак тождественности \equiv используется, когда соотношение вводится по определению. Проекции радиус-вектора тела на оси координат — это координаты тела x(t), y(t), z(t). При произвольном движении по прямой используется только одна координата, по плоскости — две координаты, в пространстве — три координаты. Зависимость координаты от времени называют уравнением движения или законом движения. Буквы r, s, v, a без стрелочек над ними означают модули соответствующих векторов, т.е. положительные величины. Проекции векторов могут быть любого знака.

1.1.1.3.

А. Вектор средней скорости за промежуток времени Δt :

$$\vec{v}_{\rm cp} = \frac{\Delta \vec{r}}{\Delta t}$$
.

Мгновенная скорость в момент времени *t*:

$$|\vec{v}(t)| = \frac{\Delta \vec{r}}{\Delta t}\Big|_{\Delta t \to 0} \equiv \vec{r}'(t).$$

Средняя путевая скорость, скаляр:

$$v_{\text{ср.путевая}} \equiv \frac{s}{t} = \frac{\text{Весь путь}}{\text{Все время}}.$$

Б. Классический закон сложения скоростей:

$$\vec{v}(t)_{\text{a6c}} = \vec{v}(t)_{\text{nep}} + \vec{v}(t)_{\text{OTH}},$$

где $\vec{v}(t)_{\rm aбc}$ — скорость слона относительно неподвижного наблюдателя; $\vec{v}(t)_{\rm orh}$ — его скорость относительно подвижной системы (автомобиля); $\vec{v}(t)_{\rm nep}$ (переносная) — скорость подвижной системы (рис. 1.3). Три скорости связаны как радиус-векторы.

Подвижная система считается движущейся поступательно. Если подвижная система вращается, то за переносную скорость берем скорость той точки подвижной системы, через которую наблюдаемое тело проходит в данный момент времени.

1.1.1.4. *Среднее ускорение* за промежуток времени Δt :

$$\vec{a}_{\rm cp} \equiv \frac{\Delta \vec{v}}{\Delta t};$$

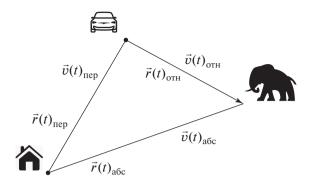


Рис. 1.3

Мгновенное ускорение в момент времени t:

$$\vec{a}(t) \equiv \frac{\Delta \vec{v}}{\Delta t}\Big|_{\Delta t \to 0} \equiv \vec{v}'(t).$$

Если ускорение \vec{a} не зависит от времени, для скорости $\vec{v}(t)$ и вектора перемещения $\Delta \vec{r}(t)$ справедливы соотношения

$$\vec{v}(t) = \vec{v}_0 + \vec{a}t, \quad \Delta \vec{r}(t) = \vec{v}_0 t + \frac{\vec{a}t^2}{2}, \quad v^2 - v_0^2 = 2\vec{a} \cdot \Delta \vec{r}.$$

При движении по прямой в одну сторону

$$v^2 - v_0^2 = 2as,$$

где s — пройденный путь.

Сложение ускорений в случае, когда подвижная система движется поступательно:

$$\vec{a}_{\text{aff}} = \vec{a}_{\text{OTH}} + \vec{a}_{\text{nep}}.$$

Если подвижная система вращается, то связь ускорений более сложная. В таком виде она применима для вращающейся системы в частном случае, когда $\vec{v}_{\text{отн}} = 0$.

1.1.1.5. Равномерное прямолинейное движение вдоль оси х:

$$x(t) = x_0 + v_x t$$
, $v_x = \text{const}$, $a_x = 0$.

1.1.1.6.

А. Прямолинейное движение с постоянным ускорением a_x вдоль оси x:

$$x(t) = x_0 + v_{x_0}t + \frac{a_x t^2}{2}, \quad v_x(t) = v_{x_0} + a_x t,$$

$$v_x^2 - v_{0_x}^2 = 2a_x(x - x_0), \quad v_{x_{cp}} = \frac{v_{1_x} + v_{2x}}{2}.$$

Б. Произвольное прямолинейное движение вдоль оси x:

$$x = x(t), \quad v_x(t) = x'(t), \quad a_x(t) = v_x'(t) = x''(t).$$

1.1.1.7.

А. Движение тела, брошенного вертикально вверх или вниз с высоты h_0 . Ось у направлена вверх, начало на земле:

$$y(t) = h_0 + v_{0y}t - \frac{gt^2}{2}, \quad v_y(t) = v_{0y} - gt,$$

$$v_y^2(h) - v_y^2(h_0) = 2g(h_0 - h), \quad s_n = g\tau^2 \frac{2n - 1}{2} = 5 \cdot (2n - 1).$$

Тело падает без начальной скорости. $s_n = (5 \text{ м}, 15 \text{ м}, 25 \text{ м}, 35 \text{ м}, ...)$ — путь, пройденный за n-ю секунду, $\tau = 1$ с.

Б. Движение тела, брошенного со скоростью \vec{v}_0 под углом α к горизонту. Начало системы координат x, y в точке вылета тела:

$$\vec{r}(t) = \vec{v}_0 t + \frac{\vec{g}t^2}{2}, \quad \vec{v}(t) = \vec{v}_0 + \vec{g}t, \quad x(t) = v_0 \cos\alpha \cdot t,$$

$$v_x = v_0 \cos\alpha, \quad y(t) = v_0 \sin\alpha \cdot t - \frac{\vec{g}t^2}{2}, \quad v_y = v_0 \sin\alpha,$$

где $\tau = 2v_0 \frac{\sin\alpha}{g}$ — время полета тела; $L = v_0^2 \frac{\sin2\alpha}{g}$ — дальность полета тела; $H = v_0^2 \frac{\sin^2\alpha}{2g} = L \frac{\mathrm{tg}\alpha}{4}$ — максимальная высота при полете.

Уравнение траектории полета (параболы): $y(x) = x \operatorname{tg} \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}$.

Дальность полета тела, брошенного на высоте H:

$$L = v_0^2 \frac{\sin 2\alpha}{2g} + v_0 \frac{\cos \alpha \sqrt{2gH + v_0^2 \sin^2 \alpha}}{g}.$$

1.1.1.8. Движение по окружности.

Угловая скорость ω тела, движущегося по окружности:

$$\omega \equiv \frac{\Delta \varphi}{\Delta t},$$

где $\Delta \phi$ — дуга в радианах, которую проходит тело за промежуток времени Δt .

Связь угловой скорости ω с периодом обращения T и частотой вращения ν :

$$\omega = \frac{2\pi}{T} = 2\pi v.$$

Связь линейной скорости тела $v_{\text{лин}}$ с угловой скоростью ω (или периодом T) и радиусом окружности R, по которой движется тело:

$$v_{\scriptscriptstyle \mathrm{ЛИН}} = \omega R = rac{2\pi R}{T}.$$

Кинематическая формула центростремительного ускорения $a_{\rm II}$ тела, движущегося по дуге окружности радиуса R со скоростью v:

$$a_{II} = \frac{v^2}{R} = \omega^2 R = v\omega.$$

Формула одинакова для спутника, камня на веревке, электрона в магнитном поле и т.д.

Модуль тангенциального ускорения a_{τ} :

$$a_{\tau} = \frac{\Delta v}{\Delta t},$$

где Δv — изменение модуля скорости тела, движущегося по окружности, за время Δt .

При равномерном движении по окружности тангенциальное ускорение отсутствует.

1.1.1.9. Движение твердого тела.

Теорема о проекции Грасгофа. Проекции скоростей двух произвольных точек твердого тела на ось, проходящую через эти точки, равны между собой (рис. 1.4).

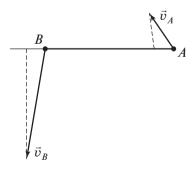


Рис. 1.4

1.1.2. Динамика

1.1.2.1. *Первый закон Ньютона*. Существуют системы отсчета, относительно которых тело, удаленное от всех тел, движется равномерно и прямолинейно.

Такие системы называются инерциальными. Во всех инерциальных системах механические явления протекают одинаково. Это утверждение составляет содержание *принципа относительности Галилея*.

1.1.2.2. Ускорения (модули) взаимодействующих тел обратно пропоршиональны их массам:

$$\frac{a_1}{a_2} = \frac{m_2}{m_1}.$$

Выбрав массу одного тела за эталон, можно по ускорениям определить массы других тел.

Отношение массы к объему по определению есть плотность вещества:

$$\frac{m}{V} \equiv \rho.$$

1.1.2.3. *Второй закон Ньютона*. Сила, действующая на тело, движущееся с ускорением:

$$\vec{F} = m\vec{a}$$
.

- **1.1.2.4.** Если на тело действуют несколько сил, то ускорение определяется их векторной суммой, называемой *равнодействующей силой* $\vec{F}_{\rm p}$: $m\vec{a} = \vec{F}_{\rm l} + \vec{F}_{\rm 2} + ... + \vec{F}_{\it n} = \vec{F}_{\rm p}$.
- **1.1.2.5.** *Третий закон Ньютона*. Тела действуют друг на друга с силами, равными по модулю и противоположными по направлению:

$$\vec{F}_{2\rightarrow 1} = -\vec{F}_{1\rightarrow 2}.$$

Согласно Ньютону, такой характер взаимодействия имеет место в любой момент времени.

1.1.2.6. Закон всемирного тяготения Ньютона. Два точечных тела (или два шара) притягиваются друг к другу с силой $F_{\rm H}$, пропорциональной массам тел и обратно пропорциональной квадрату расстояния R между центрами тел:

$$F_{\rm H} = \frac{Gm_1m_2}{R^2}.$$

Коэффициент $G = 6,67 \cdot 10^{-11} \; \text{H} \cdot \text{m}^2/\text{кг}^2$ называется гравитационной постоянной, а сама сила притяжения называется гравитационной силой.

Гравитационная сила со стороны Земли (и любой планеты) дает основной вклад в силу тяжести $mg = \frac{GmM_3}{(R_3+h)^2}$ на любой высоте h. Другой вклад в силу тяжести, обычно намного меньший, дает вращение планеты (центробежная сила).

Закон всемирного тяготения позволяет вывести из динамики *тив закона Кеплера*, полученные до его открытия путем наблюдений за планетами.

Первый закон. Планеты движутся по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон. Радиус-вектор планеты за равные промежутки времени описывает равные площади.

Третий закон. Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

1.1.2.7. Связь ускорения свободного падения g на поверхности планеты с массой M, плотностью ρ и радиусом R планеты:

$$g = \frac{F_{\rm H}}{m} = G\frac{M}{R^2} = G\frac{4}{3}\pi\rho R = G^*\rho R,$$

где
$$G^* \equiv \frac{4}{3}\pi G = 2,7939 \cdot 10^{-10} \text{ H} \cdot \text{м}^2/\text{кг}^2.$$

Первая космическая скорость на планете с ускорением свободного падения на поверхности g:

$$v_1 = \sqrt{Rg}$$
.

Для Земли $v_{13} \approx 8$ км/с.

Вторая космическая скорость:

$$v_2 = \sqrt{2Rg}$$
.

Для Земли $v_{23} \approx 11,2$ км/с.

1.1.2.8. *Закон Гука*. Сила упругости $F_{\rm упр}$ пропорциональна величине деформации x:

$$F_{\rm ynp} = -kx$$
.

Коэффициент k, называемый жесткостью, зависит от материала тела и его размеров. Для длинного стержня приближенно жесткость пропорциональна площади сечения и обратно пропорциональна длине: $k \propto \frac{S}{l}$ (∞ — знак пропорциональности).

Жесткость комбинированной пружины выражается через жесткости отдельных пружин (рис. 1.5):

 $k_{
m np} = k_1 + k_2$ при «параллельном» соединении пружин; $\frac{1}{k_{
m nc}} = \frac{1}{k_1} + \frac{1}{k_2} \Longrightarrow k_{
m nc} = \frac{k_1 k_2}{k_1 + k_2}$ при «последовательном».

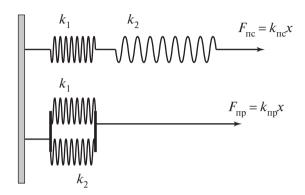


Рис. 1.5

1.1.2.9. Связь силы трения скольжения $F_{\rm тр.ck}$ и силы нормального давления N:

$$F_{\text{Tp.ck}} = \mu N$$
.

Коэффициент трения μ не зависит от скорости скользящего тела. Сила трения покоя:

$$F_{\text{тр.покоя}} \leq \mu N$$
,

может быть любой в интервале от нуля до силы трения скольжения μN . В этих пределах сила трения покоя подстраивается под внешние силы, стараясь препятствовать скольжению.

1.1.2.10. Давление p при контактном взаимодействии двух тел:

$$p\equiv\frac{N}{S},$$

где N — сила, с которой тела действуют друг на друга по нормали к поверхности контакта; S — площадь поверхности контакта.

Сила, с которой тело давит на опору или растягивает подвес (вес тела) в лифте, движущемся с ускорением a:

$$\vec{N}=m(\vec{g}-\vec{a}).$$

1.1.2.11. На тело, помещенное на наклонную плоскость, действуют три силы: сила тяжести $m\vec{g}$, нормальная реакция плоскости \vec{N} и сила трения $\vec{F}_{\rm TD}$. Проекции сил на оси x, y (рис. 1.6, a):

$$(mg)_x = mg\sin\alpha$$
, $(mg)_y = -mg\cos\alpha$, $F_{\text{TDX}} \le \mu mg\cos\alpha$.

В некоторых случаях удобно представить силу тяжести в виде двух составляющих (рис. 1.6, δ):

$$m\vec{g} = \vec{F}_{cK} + (-\vec{N}), \quad F_{cK} = mg\sin\alpha, \quad N = mg\cos\alpha,$$

где $\vec{F}_{\rm ck}$ — скатывающая сила, параллельная наклонной плоскости; $(-\vec{N})$ — сила нормального давления тела на плоскость.

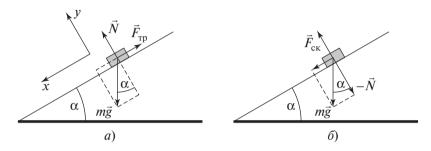


Рис. 1.6

Сила трения на наклонной плоскости:

$$F_{\rm TD} \leq \mu mg \cos \alpha$$
.

Если коэффициент трения $m > tg\alpha$, тело, помещенное на наклонную плоскость, не скользит вниз.

Ускорение тела, скатывающегося вниз по гладкой наклонной плоскости с углом при основании α:

$$a = g \sin \alpha$$
.

Сила, которую надо приложить вдоль наклонной плоскости, чтобы перемещать тело равномерно вверх по плоскости:

$$F_{\uparrow} = mg\sin\alpha + \mu mg\cos\alpha.$$

1.1.2.12. Сила инерции: $\vec{F}_{\rm u} = -m\vec{a}$, $m\vec{a}_{\rm oth} = \vec{F}_{\rm p} + \vec{F}_{\rm u}$. Если система отсчета движется с ускорением a по отношению к инерциальной системе отсчета, то такая система является неинерциальной (например, поезд, идущий с ускорением). Чтобы описывать движение относительно такой системы с помощью 2-го закона Ньютона (например, маятника в поезде),

нужно считать, что на тело, кроме «обычной» равнодействующей силы $\vec{F}_{\rm p}$, действует дополнительная сила инерции $\vec{F}_{\rm u} = -m\vec{a}$.

1.1.3. Статика

1.1.3.1. *Равнодействующая сила* $(\vec{F}_{\rm p})$ — сумма сил, действующих на тело:

$$\vec{F}_1 + \vec{F}_1 + \dots + \vec{F}_n = \vec{F}_{p}$$
.

Если тело точечное, то под действием одной равнодействующей тело движется поступательно так, как под действием всех сил. В случае тела конечных размеров, кроме поступательного движения, возможно вращательное. Чтобы обеспечить правильное движение, включая вращательное, равнодействующая должна быть приложена в определенной точке протяженного тела.

Равнодействующая существует не для любой системы сил. Пару сил, т.е. две силы \vec{F}_1 и $\vec{F}_2 = -\vec{F}_1$, приложенных в разных точках тела, нельзя заменить одной так, чтобы воздействие на тело не изменилось.

1.1.3.2. Условие равновесия материальной точки:

$$\vec{F}_1 + \vec{F}_1 + \dots + \vec{F}_n = \vec{F}_p = 0.$$

1.1.3.3. Момент M силы F относительно оси равен произведению модуля силы на расстояние l от оси до линии действия силы (l — плечо силы):

$$M \equiv F \cdot l$$
.

Если сила вращает против часовой стрелки, ее момент считают положительным, по часовой стрелке — отрицательным.

- 1.1.3.4. Условия равновесия тела конечных размеров:
- 1) $\vec{F}_1 + \vec{F}_2 + ... + \vec{F}_n = 0$;
- 2) $M_1 + M_2 + ... + M_n = 0$.

Условие 1 обеспечивает отсутствие поступательного движения, условие 2 — вращательного. Предполагается, что все векторы сил лежат в плоскости, перпендикулярной оси вращения. Если ось закреплена, то условие 1 выполнено автоматически за счет сил, приложенных к оси.

1.1.3.5. *Теорема о трех силах.* Если твердое тело конечных размеров находится в равновесии под действием трех непараллельных сил, лежащих в одной плоскости, то линии действия этих сил пересекаются в одной точке (рис. 1.7).

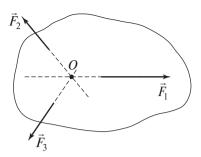


Рис. 1.7

1.1.3.6. Координата центра тяжести (ЦТ) $x_{\text{ЦТ}}$ системы материальных точек массами $m_1, m_2, ..., m_n$:

$$x_{\rm LIT} = \frac{m_1 x_1 + m_2 x_2 + \ldots + m_n x_n}{m_1 + m_2 + \ldots + m_n},$$

где $x_1, x_2, ..., x_n$ — координаты точек. В ЦТ приложена равнодействующая всех сил тяжести, действующих на отдельные частицы системы.

Аналогичная формула для *у*-координаты ЦТ и *z*-координаты. Формулы применимы и для ЦТ системы шаров.

1.1.3.7. Давление жидкости p равно отношению силы давления F, действующей на поверхность со стороны жидкости, к площади S этой поверхности:

$$p = \frac{F}{S}$$
.

Закон Паскаля. Давление, производимое на покоящуюся жидкость или газ, передается в любую точку жидкости одинаково по всем направлениям (рис. 1.8). То есть если в данной точке жидкости вращать манометр, из-

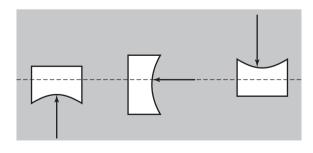


Рис. 1.8

меряя давление в разных направлениях, показания прибора будут одинаковыми.

1.1.3.8. Давление p столба жидкости под действием силы тяжести:

$$p = \rho g h$$
,

где ρ — плотность жидкости; h — высота столба.

1.1.3.9. Закон Архимеда. На тело, погруженное в жидкость, действует выталкивающая сила Архимеда $F_{\rm A}$, равная весу жидкости объема, равного объему погруженной в жидкость части тела:

$$F_{\rm A} = \rho g V$$
,

где ρ — плотность жидкости; V — объем погруженной части тела; g — ускорение свободного падения.

Закон применим и к газам.

1.1.3.10. Условия плавания тел:

1)
$$F_A > mg$$
, 2) $F_A = mg$, 3) $F_A < mg$,

где $F_{\rm A}$ — сила Архимеда при полном погружении тела в жидкость; 1 — тело плавает, частично погрузившись в жидкость; 2 — тело в равновесии на любой глубине; 3 — тело тонет.

1.1.3.11. Вес P тела массой m при погружении его в жидкость плотности $\rho_{\mathsf{x}} < \rho_{\mathsf{тела}}$:

$$P = mg - F_{A} = (\rho_{\text{тела}} - \rho_{\text{ж}})Vg,$$

где V — объем погруженной части тела.

1.1.3.12. Расход жидкости или газа:

$$\Delta V = \upsilon S \Delta t$$
, $\Delta m = \rho \upsilon S \Delta t$.

Жидкость (или газ) плотности ρ течет со скоростью v по трубе сечением S. За время Δt из трубы вытечет объем жидкости ΔV массой Δm .

1.1.3.13. Формула Торричелли:

$$v^2 = 2gh.$$

Жидкость находится в тонкостенном сосуде. На глубине h от поверхности имеется небольшое отверстие. Жидкость вытекает из него со скоростью v, такой же, как у тела, падающего с высоты h.

1.1.4. Законы сохранения

1.1.4.1. Определение импульса тела \vec{p} . Вектор, модуль которого равен произведению массы тела на модуль скорости, а направление совпадает с направлением вектора скорости:

$$\vec{p} \equiv m\vec{v}$$
.

1.1.4.2. Второй закон Ньютона в импульсной форме:

$$\Delta \vec{p} = \vec{F} \Delta t.$$

Изменение импульса тела $\Delta \vec{p}$ равно импульсу приложенной силы \vec{F} .

Импульсом силы называется произведение $\vec{F}\Delta t$. При неизменной массе тела такая форма 2-го закона Ньютона совпадает с использованной ранее $m\vec{a}=\vec{F}$.

1.1.4.3. *Полным импульсом* $\vec{P}_{\text{пол}}$ системы частиц называется вектор, равный сумме импульсов отдельных частиц:

$$\vec{P}_{\text{пол}} \equiv \sum \vec{p}_i \equiv \sum m_i \vec{v}_i.$$

1.1.4.4. *Изменение полного импульса* системы тел $\Delta \vec{P}_{\text{пол}}$ за время Δt определяется импульсом только внешних сил $\vec{F}_{\text{внш}}$:

$$\Delta \vec{P}_{\text{пол}} = \vec{F}_{\text{внш}} \Delta t.$$

Если внешних сил нет, то полный импульс системы тел не изменяется со временем:

$$\vec{P}_{\Pi \cup \Pi} = m_1 \vec{v}_1 + m_2 \vec{v}_2 + \dots + m_n \vec{v}_n = m_1 \vec{v}_1' + m_2 \vec{v}_2' + \dots + m_n \vec{v}_n'.$$

1.1.4.5. Координата центра масс (ЦМ):

$$x_{\amalg \amalg M} \equiv \frac{m_1x_1+m_2x_2+\ldots+x_n}{m_1+m_2+\ldots+m_n},$$

где $x_1, x_2, ..., x_n$ — координаты отдельных точечных тел (или шаров). Координаты $y_{\text{IIM}}, z_{\text{IIM}}$ находятся аналогично.

1.1.4.6. Проекция скорости центра масс:

$$\upsilon_{\text{IIM}x} \equiv \frac{m_1 \upsilon_{1x} + m_2 \upsilon_{2x} + \ldots + m_n \upsilon_{nx}}{m_1 + m_2 + \ldots + m_n} = \frac{P_{\text{\tiny HOJIX}}}{m_1 + m_2 + \ldots + m_n},$$

где $v_{1x}, v_{2x}, ..., v_{nx}$ — проекции скоростей отдельных частиц массами $m_1, m_2, ..., m_n; P_{\text{пол.}x}$ — проекция полного импульса системы.

Если проекция внешней силы на ось x равна нулю, проекция $v_{\coprod Mx}$ не изменяется. В частности, если при отсутствии проекции внешней силы на ось x $\coprod M$ в начальный момент покоился, то он остается неподвижным все время.

1.1.4.7. Механическая работа A, производимая постоянной силой \vec{F} над материальной точкой при ее перемещении \vec{s} :

$$A \equiv Fs\cos\alpha = \vec{F} \cdot \vec{s} = \vec{F} \cdot \vec{v} \cdot \Delta t,$$

где α — угол между вектором силы и вектором перемещения точки; \vec{v} — скорость точки.

Полная работа $A_{\text{пол}}$ над системой материальных точек по определению равна сумме работ над отдельными точками:

$$A_{\text{пол}} \equiv \sum_{i} A_{i}$$
.

1.1.4.8. Мощность N силы есть отношение работы силы к интервалу времени Δt , за которое эта работа была произведена:

$$N \equiv \frac{A}{\Delta t}$$
.

1.1.4.9. Сила \vec{F} , действующая на тело в направлении вектора скорости \vec{v} , развивает мощность N:

$$N = F \cdot v$$
.

1.1.4.10. Кинетическая энергия $E_{\text{кин}}$ тела массы m, движущегося со скоростью \vec{v} :

$$E_{\text{\tiny KUH}} \equiv \frac{mv^2}{2} = \frac{m}{2}(v_x^2 + v_y^2 + v_z^2) = \frac{p^2}{2m},$$

где p = mv — модуль импульса тела.

Формула для кинетической энергии применима при поступательном движении тела, когда скорость у всех частиц тела одинаковая. Для нескольких поступательно движущихся тел общая кинетическая энергия равна сумме энергий отдельных тел:

$$E = \sum_{i} \frac{m_i v_i^2}{2}.$$

1.1.4.11. *Теорема об изменении кинетической энергии.* Изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы:

$$E_{\text{кин1}} - E_{\text{кин0}} = \sum_{i} A_{i}.$$

1.1.4.12. Упругое центральное столкновение двух шаров массами m_1 , m_2 :

$$u_{1x} = \frac{(m_1 - m_2)v_{1x} + 2m_2v_{2x}}{m_1 + m_2}, \quad u_{2x} = \frac{(m_2 - m_1)v_{2x} + 2m_1v_{1x}}{m_1 + m_2},$$

где v_{1x} , v_{2x} — проекции скоростей шаров до столкновения; u_{1x} , u_{2x} — проекции после столкновения.

Если массы шаров одинаковые, т.е. $m_1 = m_2$, шары «обмениваются» скоростями:

$$u_{1x} = v_{2x}, u_{2x} = v_{1x}.$$

1.1.4.13. Описание упругого центрального столкновения двух шаров массами m_1 , m_2 в системе отсчета, где ЦМ покоится:

$$u'_{1x} = -u_{1x}, u'_{2x} = -u_{2x},$$

где u_{1x} , u_{2x} — проекции скоростей до удара; u'_{1x} , u'_{2x} — проекции скоростей после удара.

В этой системе отсчета проекции скоростей частиц после удара изменяют знак, не изменяясь по модулю.

1.1.4.14. Потенциальная энергия $E_{\text{упр}}$ упруго деформированного тела:

$$E_{\rm ynp} = \frac{kx^2}{2},$$

где k — жесткость; x — величина деформации.

Чаще всего формула используется в задачах с пружинами, резиновыми шнурами и т.д.

1.1.4.15. Потенциальная энергия E_{Π} тела, поднятого над Землей на высоту h:

$$E_{\pi} = mgh = A$$
.

Эта энергия равна работе A, совершаемой силой тяжести при падении тела с высоты h.

1.1.4.16. Сохранение полной механической энергии при падении тела с высоты h с начальной скоростью $v_{\rm вверху}$:

$$E_{\text{к.внизу}} = E_{\text{полн.вверху}}, \quad \frac{mv_{\text{внизу}}^2}{2} = \frac{mv_{\text{вверху}}^2}{2} + \textit{mgh}.$$

1.1.4.17. Подвешенный на нитке длиной l шарик, когда проходит положение равновесия после отклонения на угол α , имеет скорость

$$v = \sqrt{2gl(1 - \cos\alpha)}.$$

1.1.4.18. Гравитационная потенциальная энергия взаимодействия двух точечных или сферически симметричных тел:

$$E_{\Gamma} = -\frac{GmM}{R},$$

где R — расстояние между центрами.

За нулевой уровень энергии принята энергия, соответствующая бесконечно большому расстоянию между телами.

1.1.4.19. Закон сохранения энергии. Изменение механической энергии $\Delta E_{\text{мех}}$ системы происходит из-за работы сил трения между телами, входящими в систему $A_{\text{тр.вн}}$, и работы внешних сил (любых, не только трения) $A_{\text{внш}}$:

$$\Delta E_{\text{MeX}} = A_{\text{Tp.BH}} + A_{\text{BHIII}}.$$

1.1.4.20. КПД $\eta_{\text{пл}}$ наклонной плоскости равен

$$\eta_{\Pi\Pi} \equiv \frac{\Delta E_{\Pi \text{OT}}}{A_{\Pi \text{OT}}} \cdot 100\%,$$

где $\Delta E_{\rm not}$ — прирост потенциальной энергии при подъеме тела по наклонной плоскости; $A_{\rm non}$ — затраченная на подъем работа.

1.1.5. Механические колебания и волны

1.1.5.1. Второй закон Ньютона для пружинного маятника:

$$ma = -kx \Rightarrow x^{\prime\prime} + \frac{k}{m}x = 0, \quad x^{\prime\prime} + \omega^2 x = 0, \quad \omega^2 = \frac{k}{m}.$$

Уравнение описывает гармонические колебания координаты — изменение со временем координаты тела при гармонических колебаниях

$$x(t) = x_m \cdot \sin(\omega t + \varphi_0) = x_m \cdot \sin(2\pi v t + \varphi_0) = x_m \cdot \sin\left(\frac{2\pi t}{T} + \varphi_0\right),$$

где x_m — амплитуда колебаний; ν — частота колебаний; $T=\frac{1}{\nu}$ — период колебаний, т.е. наименьший промежуток времени, через который состояние повторяется; $\omega=2\pi\nu$ — циклическая частота; ϕ_0 — начальная фаза колебаний.

1.1.5.2. Соотношения между периодом колебаний T, частотой v, циклической (угловой) частотой ω , числом колебаний N за время τ :

$$T = \frac{1}{v} = \frac{2\pi}{\omega} = \frac{\tau}{N}.$$

1.1.5.3. Изменение во времени скорости тела v(t) при гармонических колебаниях с шиклической частотой ω :

$$v(t) = x(t)' = \omega \cdot x_m \cdot \cos(\omega t + \varphi_0) = v_m \cdot \cos(\omega t + \varphi_0), \quad v_m = \omega \cdot x_m,$$

где x_m — амплитуда координаты; v_m — амплитуда колебаний скорости; ϕ_0 — начальная фаза колебаний.

1.1.5.4. Изменение со временем ускорения тела a(t) при гармонических колебаниях с циклической частотой ω :

$$a(t) = v'(t) = x''(t) = -\omega^2 x_m \sin(\omega t + \varphi_0) = -a_m \sin(\omega t + \varphi_0),$$

$$a_m = \omega^2 x_m = \omega v_m,$$

где x_m — амплитуда координаты; v_m — амплитуда скорости; a_m — амплитуда колебаний ускорения; ϕ_0 — начальная фаза колебаний.

1.1.5.5. *Формула Гюйгенса*. Период T малых колебаний математического маятника длиной l равен

$$T = 2\pi \sqrt{\frac{l}{g}}, \quad v = \frac{1}{2\pi} \sqrt{\frac{g}{l}}, \quad \omega = \sqrt{\frac{g}{l}},$$

где V, ω — соответственно частота и циклическая частота маятника.

1.1.5.6. Частота v, циклическая частота ω , период T гармонических колебаний груза массы m на пружине жесткости k (пружинный маятник):

$$v = \frac{1}{2\pi} \sqrt{\frac{k}{m}}, \quad \omega = 2\pi v = \sqrt{\frac{k}{m}}, \quad T = 2\pi \sqrt{\frac{m}{k}}.$$

С такой частотой изменяются координата, скорость, ускорение груза. Кинетическая и потенциальная энергии изменяются с частотой, вдвое большей, — 2v.

1.1.5.7. Полная энергия пружинного маятника (E):

$$E = \frac{mv(t)^{2}}{2} + \frac{kx(t)^{2}}{2} = m\left[\frac{v(t)^{2}}{2} + \frac{\omega^{2}x(t)^{2}}{2}\right] = \text{const}$$

— сумма кинетической энергии и потенциальной упругой энергии. Координата x(t) и скорость v(t) изменяются со временем по гармоническим законам, полная энергия не изменяется (не зависит от времени).

Второе выражение для полной энергии (с частотой ω) применимо и для малых колебаний математического маятника. Максимальная кинетическая энергия равна максимальной потенциальной энергии:

$$\frac{mv_m^2}{2} = \frac{kx_m^2}{2}.$$

1.1.5.8. Плоская волна амплитуды y_m с периодом колебаний T и длиной волны λ движется в положительном направлении оси x. Отклонение от положения равновесия y(t,x) в точке с координатой x в момент времени t описывается уравнением бегущей волны:

$$y(t, x) = y_m \cos\left(\frac{2\pi t}{T} - \frac{2\pi x}{\lambda}\right) = y_m \cos\varphi(t, x).$$

Фазы колебаний в волне $\varphi(t, x)$ в точках, отстоящих на расстояние λ друг от друга в один и тот же момент, отличаются на 2π :

$$\varphi(t, x) = \frac{2\pi t}{T} - \frac{2\pi x}{\lambda}.$$

1.1.5.9. Соотношение между частотой ν колебаний в волне, длиной волны λ и скоростью волны c:

$$\lambda v = c$$
.

Применимо для звуковых и электромагнитных волн.

1.1.5.10. «Набег» фазы:

$$\Delta \varphi = \frac{2\pi \Delta x}{\lambda}.$$

При распространении волны фаза колебаний в один и тот же момент времени в точках, отстоящих на расстояние Δx друг от друга, отличается на $\Delta \phi$.

1.1.5.11. Суммарное колебание давления p(t,x) при возбуждении двух когерентных звуковых волн частоты ω одинаковой амплитуды p_0 с разностью хода $\Delta s = s_2 - s_1$:

$$p(t, x) = 2p_0 \cos\left(\pi \frac{s_2 - s_1}{\lambda}\right) \cos\left(\omega t - \frac{2\pi}{\lambda}x - \delta\right).$$

1.1.5.12. Условие на разность хода Δs двух когерентных волн для наблюдения минимума на интерференционной картине:

$$\Delta s = \frac{\lambda(2m+1)}{2}, m = 0, \pm 1, \pm 2, \dots,$$

где λ — длина волны в среде.

1.1.5.13. Условие на разность хода Δs двух когерентных волн для наблюдения максимума на интерференционной картине:

$$\Delta s = \lambda m$$
, $m = 0, \pm 1, \pm 2, \dots$

где λ — длина волны в среде.

- **1.1.5.14.** Доплеровский сдвиг частоты. Скорости $v_{\rm пр}$, $v_{\rm ис}$ приемника и источника меньше скорости звука c:
- 1) неподвижный источник частоты v. Приближающийся со скоростью $v_{\rm np}$ приемник воспринимает частоту

$$v_p = v \cdot \left(1 + \frac{v_{\text{np}}}{c}\right);$$

2) движущийся к неподвижному приемнику источник. Приемник ловит частоту

$$v_i = \frac{v}{1 - \frac{v_{\text{MC}}}{c}}.$$

1.2. Задачи

1.2.1. Кинематика

- **1.** В дорожной полиции раздался звонок: «Авария в двух километрах...». Тут связь прервалась. Какую важную информацию не успел передать звонивший? Что он не указал с точки зрения кинематики?
- 2. Поезд, не изменяя скорости, проезжал вечером мимо полустанка. Мальчик, лежаший в вагоне на верхней полке, нечаянно уронил телефон. Какую траекторию телефона увидел мальчик? Вагон был освещен, и падение телефона можно было наблюдать с платформы. Как выглядела траектория падавшего телефона для наблюдателя на платформе?
- **3.** Мы говорим «Солнце всходит и заходит», т.е. рассуждаем о движении Солнца. Какое тело при таком разговоре подразумевается как тело отсчета?

Учебное издание

Левиев Григорий Иосифович Трунин Михаил Рюрикович

Физика: научись решать задачи сам

Учебное пособие

Зав. редакцией *Е.А. Бережнова* Редактор *Т.Г. Паркани* Компьютерная верстка и графика: *А.И. Паркани* Корректор *А.В. Беляева* Дизайн обложки: *И.В. Ветров*

Все новости издательства — http://id.hse.ru

По вопросам закупки книг обращайтесь в отдел реализации Тел.: +7 495 772-95-90 доб. 15295, 15297 bookmarket@hse.ru

Подписано в печать 14.12.2021. Формат 70×100 1/16. Гарнитура Newton Печать офсетная. Усл. печ. л. 55,9. Уч.-изд. л. 33,5 Тираж 600 экз. Изд. № 2438. Заказ №

Национальный исследовательский университет «Высшая школа экономики» 101000, Москва, ул. Мясницкая, 20 Тел.: +7 495 772-95-90 доб. 15285

Отпечатано в АО «ИПК «Чувашия» 428019, г. Чебоксары, пр. И. Яковлева, 13 Тел.: +7 (8352) 56-00-23

Для заметок