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Algorithmic complexity of learning is studied in terms of a search for similarity of positive and
negative examples of construction of a classification on the basis learning-derived hypotheses.
Descriptor languages, i.e., representation of examples by sets, are discussed. Hypotheses are
defined as intersections of positive examples which are not subsets of negative examples. We
prove #P-completeness of the problem of determination of the number of all minimal hypotheses,
NP-completencss, and poiynomial solubility of certain problems of hypothesis generation with
limits on the size and number of supporting examples, Classification of cxampies on the basis of
hypotheses in the general case is shown to be a difficuit problem. Polynomial solubility of special
important cases is proved.

$L. INTRODUCTION

Most automatic learning systems rely on a certain notion of similarity to find patterns in objects of study.
Similarity is also used to classify new objects using such patterns. Similarity is normaily defined either as a relation,
or metrically, or as an operation that assigns to certain initial objects a subobject expressing their similarity. Such
a definition of similarity is adopted in the JSM method of automatic bypothesis generation (JSM-AHG) [1,2]. In
this method, similarity is defined as an idempotent, communicative, and associative operation on object pairs (L.e.,
an operation that specifies a semilattice on object sets). These natural properties of the similarity operation
uncquivocally express similarity of a set of objects in terms of pairwise similaritics regardless of the arrangement
of objects in the database (see, e.g., [3,4]). Among examples of semilattice operations are

- A semilattice on N-sets of hypergraphs with ordered labels of nodes and hyperedges, where the result
of similarity operation acting on a pair of scts of hypergraphs ¥ and 3 is the set of all embedding-maximal
common subhypergraphs of hypergraphs from ¥ and # [4,5). -

- [nterpolational semilattice of intervals in which the minimal element is an interval contained between
minimal and maximal admissible values, and the result of similarity operation acting upon a pair of intervals is a
third interval whose lower boundary is the minimum of lower boundarics of the first two intervals, and whose upper
boundary is the maximum of their upper boundaries [4].

The present paper is a continuation of [6,7]. It discusses automatic complexity of the search for similarity
and its use in classification where data are represented by Boolean lower semilattices of form (2°, N, ). With such
mﬂmamohmmampmm&umwﬁsmmafmmmMmmm
case is the operation of intersection of sets. Conclusions concerning difficult soiubility (VP- and #-difficulty) for
scmilattices of this kind indicate that corresponding problems for the other above-mentioned representations are
difficult to solve, because the Boolean case is a special case of such representations. For graphs, even determination
of the embx.ddability of _a object in another is difficult to solve (by virtue of the NPcompletencss of the
SUBGRAPH ISOMORPHISM probiem [8]).

The discussion includes the following sections. In the second section, according to [1,2], we give a definition
of hypotheses, conmsider functionals of hypothesis quality, offer a combinatoric interpretation, and investigate
complexity of problems of recognition and cnumeration of hypotheses which are optimal in the sense of these
MMMWM&WWMWMMﬂM&OfW
(classification) accomplished on the basis of hypotheses.
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§2. HYPOTHESES AND THE COMPLEXITY OF THEIR GENERATION

Suppose we wish to investigate a certain property W of objects from § C 2* for certain U — a set of
structure elements. The set of all objects from S about which we know that they have property # will be denoted
by S™; the set of objects of which we know that they do not have property W is denoted 5 ~. The set of objects from
S of which we do not know whether they possess property W is denoted by S”. We thus write $* = §/(5* U 57).

Triplet {U, §*, $7) is initial data; the clements of set $* are called positive examples, and the elements
of set S~ are negative examples.

Definition 2.1. (4, {X, .., X,}) is global similarity with respect to set Z & S, if {X}, .. X} S X,n > 1,
X, N...NX, = k, and for arbitrary Y: Y € Z\{X,, ... X,} wchawe Y " & # k. (Thus, {X,, ...,.X,} is the sct of all objects
from Z which include 4, and 4 is their intersection.)

Note that this definition is equivaleat to the definition of a "concept” from [9). However, in [9] and other
studies from the same series, the notion of negative examples given in the following definition is not used.

Definition 2.2. (&, {X, .., X,}) is a positive (or {+)-) hypothesit (concerning the cause of property W if
(4, {X,, ..X,}) is global similarity relative to set S* and & is not a subobject (in the sense of <) of a certain object
from 5 7).  is called the head of the hypothesis, Negative {or {—)-) hypotheses (concerning the absence of property
W) ars defined dually.

As demonstrated in {7], calculation of all hypotheses is a #P-compiete problem, so that generation of all
hypotheses may involve difficult due to the need for an exponential amount of computer memory and operation
time. This justifies considering generation of just one hypothesis, several hypotheses, or all "most interesting”
hypotheses, For exampie, one can consider in this case hypotheses with embedding-minimal heads. Such hypotheses
are confirmed by a greater number of examples than hypotheses with embedding-large heads, At the same time,
they are more "daring”: they can lead to a large number of prognoses (see §3). In the JSM-method, selection of
embedding-minimal hypotheses made it possible to substantially reduce (sometimes by a three-digit factor) the total
number of hypotheses. However, the pessimistic outcome of Theorem 2.5 does not indicate the likelihood of an
effiective application of this method in the general case.

Another possible technique for selection would be to take hypotheses on which minima or maxima of the

ing functionals dependent on size of hypothesis head & and number of confirming examples n are obtained.

L |A{ is the "boldness® of a hypothesis [6]. The smaller the hypothesis, the stronger the supposition
concerning a subject field expressed by it, because it can gencrate a larger number of prognoses, On the other hand,
the larger a bypothesis, the less it differs from initial facts and the less will objects classified with the aid of such a
hypmhmd&r&om&m.ltmmuﬁedmmmtommwmmm "refiabie”
(“reliability-1").

2. n is "reliability-2" [6]. The greater the number of confirming examples, the more reliable the hypothesis.

Suu:rc]mbihtyulmonehandandmkab:ht;ﬂonthcotherarematradeoﬁmlamnshlp,thefoﬂmng
characteristics of hypothesis quality are also legitimate:

3. |hj +n;

4.q || +n,0<g<1;

5.8l +qn,0<g< 1

6. |&|-n,

Previous results concerning compiexity of the existential problem for hypotheses of a certain kind applied
also to a set of initial examples which have like sign [7,10]. These arc expressed by the following table:

< - >

Y| P NP o
a 2 NP P
14| +a ? NP P

where P denotes existence of a polynomial algorithm that can solve the problem; NP represents NP-completeness
of the problem; ? represents problem openncss, For example, the upper left element of the table means that
problem “does there exist a bypothesis for which |#| < X possesses a polynomial solving algorithm. The element



in the bottom line of the middle column indicates that probicm "does there exist a hypothesis such that for it |4 |
+ n = K" is an NP-complete problem.

We denote the massive problem of existence of a ypothesis of sign z with fixed restriction to values of the
fanctional and the set of input data consisting cither of positive or negative or positive and negative cxampics by
quadruplet {z,f, R, 5), where z € { +, —} is the sign of the hypothesis,f € {|&|,n, |&] + a,q{k| + n, |R] + qn,
|{n} is the form of the functional, R € {5, =, &} is the type of relation linking functional value and parameter,
ands € {{+},{~), {+, —}} isacharacteristic of the sct of examples (which includes cither only positive examples,
ar only negative examples, or both kinds of examples, respectively).

Thus, a tuple of the form (+, g|#{ + », <, {+}) corresponds to this problem:

Given: set of (+)-examples S*, §* © 2" and natural number X < |U].

Determine: does there exist a (+)-lypothesis with head & and number of examples 7 that is such

that glk| + n < K?

Theorem 2.1. Problem (+, ¢|A| + n, <, {+})is NP-complete foranyg: 0 < g < L

Proof. Membership of the problem in the NP class is obvious. For solution one checks whether all (+)-
examples containing / intersect; the resulting intersection is compared with 4, and value || + 2 is compared with
K. The procedure takes 0(| U]+ |S*|) operations.

Let us reduce to our problem a "3-combination (3-C)” problem [8]:

Given: setM & W X X X Y, where W, X, and Y are nonintersecting sets |W} = |X| = |Y] = P,

|M| = N.

Define: does there exist set M* S M such that [M’| = P, and no two different clements of M’

have equal components (M’ is called a three-dimensional combination).

From the input data of problem 3-C we construct binary matrix E of size N X (N + 3p(p* + p)). The right-
hand side of matrix £ is submatrix £*, which consists of 3p groups of columns, Each group contains p* + p columns.
Each group of columns is in biunique correspondence to a certain element of sets W, X, and Y. Element ¢ of set M,
i.e.,m,-(w,x,y,)ﬁompmblemS-ermpondsmmrofmauixE.whmthccbmmtsofsubmauixE't.hat
correspond to elements w, x,, and y, are filled with zeros, while all other clements are filled with ones. Thus,
submatrix E* is obtained from the matrix of problem 3-C [8, p. 83] by duplicating columns (p* + p) times. Left N
% N-submatrix E* of matrix E has zeros in element 1 of rowt (1 < ¢ < N). All other elements are zeros:

We will show that problem 3-C with these parameters is reducible to problem (+, gl| +n, <, {+}) (0@ < ¢ <
1), where S* consists of N-cxamples, each of which corresponds to a row of the matrix E. Unity in a row indicates
existence of a respective clement from U, while a zero indicates its absence, and |U] = 3p(@* + p), |S*| = N, K
=q(N=p) +p.

Suppose tuat initial problem 3-C has a solution. In that case, for certain rows of matrix E right subrows
(which correspond to E”) in the product form a zero vector, because a zero row would be obtained in the initial
matrix of probiem 3-C (that matrix that has not "swollen® by a factor of 7° + p). The product of left subrows (which
correspond to matrix £') of these p rows yiekds a row with N ~ p ones; functional g{A| + » takes the value g(NV
- p) + p, ie, the problem has a solution. Conversely, suppose that problem (+, g|A{ + n, <, {+}) with
parameters N + 3p(p® + p) (size of U), N (number of exampies), K = g(N — p) + p (restriction of functional value)
has a solution, i.e., matrix £ contains » such rows, and their product yiclds a row where the sum of the number of
ones plus number 7 is not greater thang(N — p) +p < gN +p < q¢’ + p.Since gp* <p at0 < g < 1, the number



of ones & in the right-hand side of the product that belongs to E” is cqual to zero a priori (because by construction
of matrix E” the number of ones ¢ cannot be such that 0 < ¢ < p’ + p). Here, r cannot be less than p; otherwise,
respective problem 3-C would have a solution — a 3-combination of size r < p — which is impossibie. The value of
r cannot be greater than p; otherwise, the value of functional ¢[A{ + nwouldbeg(N —r) +r=gN+ (1 —g)r >
gN + (1 — qdp = g(N — p) + p, which contradicts our assumption that the value of the functional not exceed g(V
=~ p) + p. Therefore, r = p, and we have found for problem 3-C a 3-combination of size p. We have thus proved
reducibility. The polynomiality of the problem follows directly from the polynomiality of the size of matrix E: matrix
E’ is of size not greater than p* X p* elements; matrix £ is not greater than 7* x 3p(@ + p).

Theorem 2.2, There exists an algorithm solving problem (+, k[, =, {+, —}) within time O(|U]-|S*|?
X IS7)D.

Prool, We give a description of an algorithm which finds a solution within the time indicated above.

Step 1. Consirnct set J* of all pairwise intersections of sets from S*,

Step 2. For cach X € J*, determine whether there exists in S~ a set » which is such that s O X. Construct
set Y={X|Xgl*, T1ds: 2¢5-, s2X).

Step 3. Find in Y scts whose cardinality is not less than parameter XK. If such sets exist, answer yes; if they
do not exist, answer no. Complete execution.

Comments ou the algorithm. All cmbedding-maximum intersections are contained amid pairwise
intersections (they coincide with one of the latter), becanse intersections of a larger number of objects (subsets of
U) can only reduce the result of intersection. If Y contains scts of cardinality not less than X, they define hypotheses
with value |k| 2 K

Let us estimate the time complexity of this algorithm.

Step 1. O({U|-|S*|?) = search all pairs of positive cxampies and find their intersections.

Step 2. O(|U|-15*|*|S~|) = for each pair of positive examples scan the entire set of ncgative examples.

Step 3. O(JU1- |5*|?) — test entire Y, limited in size by the set of pairs.

The final time complexity of the algorithm is O(}U]-|S*]* 1S~ |).

Corollary. Problem (+, n, 5, {+, —}) has a solution algorithm with time complexity
o(|UI-{5*1*|S7 ).

The proof follows from Theorem 2.2 and the fact that intersections of largest cardinality correspond to the
smallest number of intersecting sets.

Note that the algorithm also provides the answer to a more general question: "Does there exist at Ieast one
kypothesis for given sets of positive and negative examples?” If all pairwise intersections of positive bypotheses are
included in negative ones, then the intersections of a larger number of exampies are a priori known to be included
in negative cxamples.

For subsequent discussion, we introduce certain auxiliary constructions. To this end, we proceed from a
problem of node covering of graph G = (V, E).

Definition 2.3. A tripartite graph associated with arbitrary graph G (V, E} is graph T of this form:

Taa(WYWUWS, E), |Wm| Wi am|V], |[W*|m~|E},
E'sWix Wy wmx .

Pair of nodes (wi, w}), w}, € W', w] € W? corresponds biuniquely tonode v, € V. (w}, w}) € E',ifi » j.
Node w; € w* corresponds biuniquely to edge ¢, € E. (W}, wi) € E', if node v; € V'is incident to edge ¢, € E.

We say that in bipartite graph B = {X U Y, Z) sct of nodes X” & X dominates the nodes from ¥V” © ¥,
if cach node from ¥’ is adjacent to some node from X*. The common shadow of node set X” & X is defined as
set Y¥ © Y of all nodes linked to each node from set X°.

Lemma 2.3. Each nodal covering of size K in graph G = {V, E} corresponds in tripartite graph 7 to triplet
{C,Z,W*), where C S W', Z S W? 7 is the common shadow of nodes from C which dominates all nodes from
Wiand |C] = |W!| -K= V] =K |Z} =K

The proof follows directly from construction of graph T. Indeed, set of nodes Z of size X dominates all
nodes from W if and only if it corresponds to a subset of nodes in graph G which constitute a nodal covering of
size K. Set of nodes Z in this case is the common shadow of set of nodes C, which corresponds to the set of nodes
of graph G; it is complementary to the set of nodes that corresponds to set Z, Therefore, C = |W!| = K = |V] —
KO



Deflnition 2.4. The initial data corresponding to tripartite graph T: (W' U W2 U W?, E’) are triplet (U,
$*,87), where U = W' U W2 U W2, the elements of S* correspond to nodes from W2, and the elements of S~
to nodes from W*. Positive example 5, which biuniquely corresponds to node w} € W consists of the union of node
sets from w* which are adjacent to node w; and {w}}, ie, 5, = {Wi} U {W|w? € W3 (W), w’) € E’}. Negative
example 5, biuniquely corresponding to node wi € W consists of the union of the set of nodes from W2 which are
not adjacent to node w] and {wi}, i.e., 5, = {w]} U {W?|w? € W2 (w), W) € E".

Lemuna 2.4. Let triplet (C, Z, W?) of the set of nodes of graph G from Definition 2.3 be such that C G
Wt |C| > L, Z @ W?is the common shadow of nodes from C which dominates all nodes from W2, and C is the
embedding-maximal set of nodes whose common shadow is Z. In that case, pair (Z, {{w*| (W, w)) E'}: w} € C})
is a (+)-hypotbesis obtained with initial data that correspond to tripartite graph 7" under Definition 2.4.

Prool. Consider pair (Z, {{w*|(W*, w]) E'}: w| € C}). Elements of the type of w}, wi are introduced into
U to impart difference to examples (as required by Definition 2.2) which correspoad to nodes from w* (or w”) that
are adjacent to the same nodes from w#, Since elements w} and w; are different in all examples, they do not belong
in any intersection. The intersection of all sets of the form {w?](w?, w!) € E") for w; € C is exactly set {w?|w? €
Z}, i.e., set Z, because Z is the common shadow of nodes from C. On the other hand, among nodes from W* there
are no other nodes linked to all nodes from Z, because C is embedding-maximal by virtue of the conditions of
Lemma 2.4. Thus, pair (Z, {{w*|(#W*, w}) € E'}: w’ € C}) is global similarity of (+)-examples from $*. Since
by the conditions of Lemma 2.4 cach clement of Z is not contained in at least one (~)-exampie, Z is not contained
in any (~)-cxample, and the abowe pair is a (+)-hypothesis in accordance with Definition 2.2, [J

Obviously, the converse is also feasible: from initial data (U, §*, §~) we can build tripartite graph T in
which hypotheses wouid correspond to embedding-maximal complete bipartite subgraphs (nodes of the right part
being dominant).

Example. Consider graph 7" depicted in Fig. 1, where the nodes of the middle part are marked by 4, B, C,
D,E,F,and G.

In the problem of hypotheses the set of (+ )-examples in this case is S* = {X, X}, X, X, X;}, S~ = {Y],
YD YJ& Y‘}! Whmxl = {As Bv C’ W{}’Xz = {AwB’D’ W%},Xg = {A’E’Fs Wg},x‘ = {As C9 69 ‘Vi}!XS = {Ar C9 G:
wsh Yy = {4,F,G,w}, Y, = {4, D, F,w3}, Y, = {B, E, F, G, w3}, Y, = {B, D, F,w,}. Global similarities of (+)-
examples are pairs {4, {X), X, X, X, X;}), 4B, {X,, X,}), UC, {X,, X, X,}), {ACG, {X,, X;}). Among these
pairs, the second, third, and fourth are ( +)-hypotheses. In the first pair, the node of the middle part with label .4
does not dominate the first and second nodes of the right part.

Theorem 2.5. The problem "the number of hypotheses which are embedding-minimal” is #P-complets (see
(1] for the definition of #P-completeness).

Given: S* and 5 are sets of (+)- and (—)-examples.

DRetsrmine: #{H = (, {X,, ., X,}): (+)-hypothesis and there exists no(+)-hypothesis H’ =

', {X,', ., X,'}) such that A’ G h}.

Prool. We reduce the problem of the aumber of embedding-minimal nodal coverings [12] to our problem:

Given: graph G = (V, E).

Determine: #{V° & V] "(u,v) EE-=~u € Aorv € A" takes place for4 = V", but not for4 C

|

By construction of Lemma 2.3, the ecmbedding-minimal nodal covering in graph G corresponds to triplet
{C, Z, W) of subsets of the nodes of tripartitc graph T such that Z, which is the common shadow of nodes from
C, at the same time is the embedding-minimal set of nodes from W2 which dominates W, Conversely, each triplet
of this form corresponds to an embedding-minimal nodal covering in graph G. By virtue of Lemma 2.4, each triplet

5



of this type corresponds biuniquely to a hypothesis that satisfies the prohibition of the counterexample with input
data (U, §*, §~), where U, §*, and §~ arc as spedified in Lemma 2.4. The (¢mbedding) minimality of Z in this
case corresponds o the (embedding) minimality of . O

Theorem 2.6. Problem {+, |k|, =, {+, =}) is NP-complete.

Proel. The problem obviously belongs to the NP class, For each potential solution, i.c., a hypothesis
advanced, it is sufficient to take the intersection of all ( +)-examples containing #, match the resuiting intersection
with A, in the case of coincidence test that & is not included in all (—)-hypotheses, and compare |/ | with K, All these
operations can be performed within time O(|U1-(|S*] + |5™|)). We then reduce the problem of "minimal nodal
covering” from [8] to our problem:

Given: graph G = {V, E) and natural number X < [V].

Determing: does there exist set V* & V such that || < K, and for arbitrarye = (v, v) € Ewe

have 'y, € V" orv, € V'

We construct from graph G tripartite graph T by using the method described in Definition 2.3. By virtue
of Lemma 2.3, the nodal covering of size X of graph G corresponds in graph T to triplet similarity operation, which
issuch that {C| = {V] ~ K, |Z] = K, |W?]| = |E|; set Z is the common shadow of the sets of nodes of C which
dominates sct W *. By virtue of Lemma 2.4, this triplet comresponds to a hypothesis with prohibition of
counterexamples of size X constituted by |V/] — K positive exampies on initial data corresponding to graph T by
Definition 2.4. Convergence is accomplished within time O({V| + |E|).

Corollary, Problem {+, 2, 2, {+, ~}) is NP-complete,

The proof follows from Theorem 2.6 and the fact that intersections of largest cardinality correspond to the
least aumber of intersecting sets.

Theorem 2.7, Problem {+, jA| + n, &, {+, —}) is NP<complete.

It will be recalled that a special case of this problem (in absence of negative examples) is reducible to a
polynomially soluble problem of the scarch for the size of maximal combination of pairs [7,10]. The polynomial
algorithm which finds ypotheses with maximum |k | + » for the case of S~ = O is given in {10],

Proef. By virtue of Lemma 2.4, this problem is equivaleat to the following one:

Given: tripartite graph 7% = (¥, U V, U V,,E"), E® & V| X V, U ¥; X V, and natural number

k= 7|+ [Vl

Determing: does there exist a embedding-maximal complete bipartite subgraph B° = ()’ U

V), E;) of group T which is such that V! @ V,, V) & Vo, E, = V' X V¢, V| + VY]

2 k, and V,' dominates V;?

We reduce to this formulation the problem of "minimal nodal covering” (see Theorem 2.6). We construct
from graph G associated tripartite graph T = (W; U W? U W, E’ according to Definition 2.3. From T we construct
the following tripartite graph: T" = (V, U ¥, U V3, E"),E* & V, X V, U V, X ¥,, [V} = m-|W'|, [¥;] = [W,
V3| = |W?|,V,= ViU . UV}, whereforanyi: 1 <i < n, |V}| = |W!|, and a subgraph induced by sets of nodes
V,, V V, is isomorphic to graph 7. Thus, the embedding-maximal complete bipartite subgraph (EMCBS) of graph
TonnodesA & W', B S W2 corresponds to the EMCBS of graph T” on nodes A’ © V,, B’ @ V,, where |4’]
=njd|.

We will show that in arbitrary graph G there exists a nodal covering of size not greater than X < [V] =
n if and only if tripartite graph 7” built from G has a complete bipartite subgraph B = (V' U V!, E,) which is
such that V)’ G V,, V' @ Vo, E, = V! X ¥y, [Vi’| + |Vi'| 2 k = n+(n — k) + 1, and ¥, dominates V.

Indeed, suppose that a nodal covering of size not greater than X is included in graph G. That means that
it is possible to find in graph 7" EMCBS (V' U V)", V) X V' whichissuch that V}' € V, V) & V1 5 |V
< K, and ¥, dominates V,, Here, ¥, is not less than n-(n — K), and V'] + |V} 2 no(r = K) + L

Conversely, suppose that graph T contains EMCBS (V' U V', V)’ X V'), which is such that V)’ &
VoV @V, 15V, < KV, dominates V), and |V’| + |V)'| 2 n-(n — K} + L Since |V,'| < n, therefore,
Vil 2 a-(n = K) — n + L This EMCBS of graph 7" in graph T corresponds to EMCBS B = (W,’ U W,’, W'
X W), whichissuch that W' @ W', W, G Wiand |W,'| = |W,'|/n. Therefore, |W,'| 2 [n(n -=K) - n
+ 1)/n] + 1 2 n — K means that by definition of graph T (Definition 2.3) |W;’| < X, and, by virtue of Lemma 2.3,
graph contains a nodal covering of size not greater than X,

Theorem 2.3. Problem {+, J&| + n, {+}) is NP-complete.

Prool, The problem obviously belongs to the NP class. A graph interpretation [7, Lemma 1] of this problem
is the following problem in arbitrary bipartite graph B = {}/; U ¥V, E): find an EMCBS with not more than X
nodes, i.c., an embedding-maximal graph of the form (V' U V}, E'), where V' S V, V)’ S VoL, E' = V'



X Vy & E.We reduce NP-complete problem "cardinality-minimal maximal pair combination” to the above problem
[2 p. 239

Given: bipartite graph B = (W' U W3, E) and natural number X < |E|

Determine: does there exist embedding-maximal pair combination M of size [M| < K?

From B = (W' U W2 E) we construct bipartite graph B’ = {, U V,, E'), |V,| = |V3} + E. Edge
« of graph B in graph B’ corresponds biuniquely to pair of nodes (v}, v3): vl € V,v; € V,, (v}, v}) € E’ if and only
if cither edges ¢, and ¢; from £ are not incident ori = j. An arbitrary pair combination in B in this case corresponds
to a complete bipartite subgraph in B’, and vice versa. Reduction preserves embedding-maximality, and so
embedding-maximal pair combinations of graph B of cardinality not greater than X correspond biuniquely to
embedding-maximal complete bipartite subgraphs of B’ that have at most 2K nodes. Reducibility is accomplished
in O(|V] + |E|) operations. -

§3. COMPLEXITY OF PROGNOSIS ALGORITHM

‘We consider algorithmie compiexity associated with prognosis or classification of objects from S™ on the
basis of (+)- and (—)-hypothescs that have been generated. Definitions are given in accordance with 1],

Definition 3.1. Object P € $" is called a (+)-prognosis if there exists (+)-hypothesis (&, {X,, .., X,}) such
that 5 S P, and for any (—)-hypothesis (4", {Y), .., ¥,}) it is true that 4’ & P.

A negative prognosis ({—)-prognosis) is defined by a dual statement. For convenience, we introduce the
Pesrig'dl:?nlz. (+)-hypothesis (&, {X;, ..., X,}) is a hypothesis favoring a positive prognosis for object

1 "

Definition 3.3, (—)-hypothesis (1., {Y, ... ¥,.}) is a hypothesis against a positive prognosis for object P
€ §7ifh, & P, Thus, object P € 5" is a (+)-prognosis if there exists for this object a hypothesis favoring a positive
progaosis and there are no hypotheses against a positive prognosis.

Definition 31 can be implemented casily as an algorithm: first generate sets of (+)- and (—)-hypotheses.
Then analyze occurrenices of resulting hypotheses in objects from S, Hmmu,th:smahzauonhasanobwnus
drawback: if the number of hypotheses is exponential (we recall that the problem of "number of ail hypotheses® is
#P-containing [6]), then the amount of time and memory required for classification of even a single object from
$" are known to be exponcntial,

To realize Definition 3.1 a different algorithm is proposed. We describe its special case S~ = O,

Let P € S" be a question, i.e., the object for which we wish to construct a proguosis. We suppose that P
= {Pyp} S U

Step0.i: = L

Step 1. Find all (+ )-examples containing p, and calculate their intersection ,. If there (at least) are no two
(+)-exampies containing p,, go to Step 4.

Step 2. If b, & P, classify P according to Definition 31 positively. Stop execation.

Step 3. If intersection of all exampies containing p, is not a subset of P, then P canmnot be classified from
exampies containing p,, because intersections of a smaller number of examples certainly could not be a subset of
P,

Step 4. Ifi = 1, then classification of P is impossible, and stop exccution of the algorithm. Else, go to Step

Step 5.i: = { + 1. Return to Step L

The algorithm can perform (+)-prognosis (or conclude that a prognosis is impossible) for object P within
time O(¢-|S*|-{U]). Can one be Limited to generating a polynomial subset of hypotheses when S™ = 27 We
propose a combinatoric interpretation of the prognosis probiem.

Definition 3.4, Problem of "domination by parts of complete graph® (DPCG) is defined as follows:

Given: quadripartite graph G = (V;, U V; U VU VL ELE @ (V, X V) U (% X V) U (V; X V).

Graphs B,, B., and B, are subgraphs of graph G which are induced bysets of nodes (¥, U V), (V;

U Vy), (V3 U V), respectively.

Determing: does there exist in subgraph B, of graph G a complete graph B’ = (V' U V', I}’

X V,') which is embedding-maximal and such that V' S V,, V' S Vi, and node set ¥’

dominates ¥}, and node set V,' dominates V,, |V;'| > LV, = &7



Definition 3.5. The problem of "hypothesis favoring a positive prognosis® (HFPP) that corresponds to a
DPCG problem is defined as:

Given: in initial data (U, §*,5~) question P € §", where U= VUV, U VL, UV, S" = {X, =

{1} U {v;y e ¥, }{{¥y = ¥,} i8 the union of the set of all nodes from V; which are adjaceat to

nodes v} € V, and sets of all nodes from V] that arc not adjacent tonode v € Vi S~ = {Y, = {v{}

UV,\{uP,,_,w‘},{ﬂ,“,w’}thesetohllnodu&mlf,adpmtonodev‘GI{.},P Va

mdouthuem(ﬂhypm&,{xl,_. X))suchthath S P =V, (ie hisa

hypothesis favoring a positive prognosis for question P)?

Lemmg 3.1. For quadripartite graph G of the form specified by Definition 3.4, the DPCG problem has a
solution if and only if the HFPP problem is soluble.

Prool. We first note that, as in Lemma 2.4, sets of clements of the type of v2, v} are introduced into I to
avoid having identical cxampics in §* and S™. These clements are not included in intersections.

L Let (A, {X,, ., X,}} be (+)-lypothesis & & P. In that case, in graph G the subgraph induced by nodes
v?l,...,v' € V¥, that correspond to {X,, .., X,} and the nodes from ¥, which correspoad to 4 is an embedding-
mmdmpletebtparhtewbgnph[?,lmml}hsuofnoduv},_v’ € V¥, dominates V. Indeed, let
certain node v, € Vibenmadjmmanyofthenohﬁm{ﬂl,_.v’} Than,bydeﬁmumof(-l-)-cnmples,vl
€ X, .y, € X,andX, N...N X, & P (becausev, § P). Leth correspond to nodesw?, s Wiy in G. Set of nodes {w;,

vy Wiy then dominates set V. uppmethﬂthsuﬂso,andmmdev‘éﬂmnotad]wmmanynodc&om
{w},...,w‘,,} Then by definition of (—)-cxampies for arbitrary (— )-mlm;ﬂe}}mhmw’er}, s Wiy € Yyand i
S Y, which contradicts the fact that hypothesis (%, {X,, .., X,}) was obtain by a rule “with prohibition of
counte:mmple“(De.ﬁmhanZ.Z)

2Let V) S Vo Vy' S ¥, be sets of graph nodes such that a bipartite graph induced by these nodes is a
complete and embedding-maximal graph. Node set V' dominates V, and V" dominates ¥,. By definition of (+)-
and (—)-examples, specified by graph G, ie., (V)', Vy') corresponds to certain (+)-bypothesis {4, (X, .., X,})
obtained according to Definition 2.2. Indeed, since the bipartite graph induced by nodes V' and V,' is an EMCBS
(see Theorem 2.8), it corresponds to global similarity of ( + )-examples, It remains to demonstrate that this similarity
is in set P and has no counterexampies. The former is true by virtue of the definition of ( +)-cxampies on graph G
from Definition 3.4 and the fact that V' dominates V,. Indeed, suppose thatX, N...N X, = & & P.Itis then possible
to find in set ¥, node v € k. By definition of X, node v is not connected to any node from V', which contradicts
domiination of V' over V,. The fact that hypothesis (', ¥;’) has no counterexamples follows directly from the
definition of (—)-cxamples on graph G and the fact that V3’ dominates V. O

Consider the graph in Fig. 2, where the nodes of the first part are marked by C, F, and G, and
the nodes of the third part by 4, B, D, and E. In the probiem of prognosis, P = {4, B, D, E}, the set of (+)-
examples and the set of (—)-examples are

Stm Xy, Xy Xy X, S=={¥), Yo, Vs Yi}, where
X|-{A. B, C, Ulz}. XQ-{A. B, D. U:z}. x.—.
={A, E, F, os%}, X,== {4, C, G, 05,
Yl-{Av uli"}:n YS- {Au Dn v"}r Y‘- {Bt Et UI'}. Y.‘:-
= {B, D, v,

Global properties of (+)-cxamples are pairs {4, {X), X, X,, X.}), (4B, {X,, X;}), {AC, {X,, X.}). The sccond
pair is the only one which favor a positive prognosis for P, because in the first case the first and second nodes of
the fourth part are not dominated (the head of the hypothesis belongs to the (—)-example, and Definition 2.2 is thus
violated). In the third case, the node labeled C is not dominated (the hypothesis head does not belong to P).

We will show that, at arbitrary input data and arbitrary question P € S”, problem “there exists a (+)-
bypothesis favoring a §.sitive prognosis for P~ is NP-complete. By virtue of the duality of ( +)- and (~)-hypotheses,
that implies that problem "object P € S” presented for prognosis receives complete positive determination from
a certain parameter that satisfies the prohibition of a counterexample” is D,-complete [13]. For definition of (—)-
bypotheses (which is not dual to definition of ( +)-hypotheses) givea in [2], all (~)-hypotheses can be found within
polynomial time, and the prognosis probiem is NP-complete,

The cquivalence established in Lemma 31 allows us to rcformulate the prognosis problem as a
quadripartite graph problem.



Theorem 3.2. The DPCG problem is NP-complete.

Proof. Consider the following special case of the DPCG problem. Let || = |V3] = a3 i, j: 1 <i,j < n;
Vi € Vp, v} € V,; (v),v) € Eif and onlyifi » j and bipartite graphs induced by sets of nodes ¥, U V,and V, U V,
mmmh&amqmmmwdmbcddmg-mdmpmbmmsubmphsmmdgﬂphs
of the M({V}, -!Vzk} v {‘gs"'!‘; }sEI'}’ where E’ = {vf,...,v’.} {vgl: “"ivJ }’and{’b --,fn} {1' ...,)'t}\{ll,
..,:,},Le.,thesetofmdmofuodﬁﬂmV,meomplementarytothcsetofmd:cesofnodesﬁ'om
that bipartite graphs induced by node sets V,, V., V,, and V, mmorphm,thmspeualmseoftheDPCGpmbl
is equivalent to the following DMSN problem.

Problem "domination by mutually complementary sets of nodes” (DMSN),

Given: bipartite graph B = (W, U W, E)E G W, X W,

Determing: does there exist set W” & W, such that both sets W', W\, dominate #,?

Lemma 3.3, The DMSN problem is NP-complete.

Proof [A. A. Karzanov]. We reduce the problem of feasibility of CNF to a DMSN problem [8):

Given: CNFC =D, A..AD_D,= (=)x, V.V (-—)x,‘,whnreforarbmary:and;,x,,ex= {x,

N B

Determine: does there exist a Boolean ensemble which executes C?

From CNF F we construct bipartite graph B = (V, U VL ELE SV, X ¥y V| =2m + L, |V, =n +
m. hmdesetiﬁeachmablex,mmgnedbumquclymdepau(vﬁ,vh)ﬁxx,and “1x,, respectively. In node set
V, each disjunction D, is assigned node v, 1 < j < n, Each variablex, is assigned node v, 2 + 1 < { € 8 + m. Node
pan(v,,v,),whemv‘ € V,, v} € V,, is connected by an edge if and oaly if one of the follwing cases takes place:

1)} mtomml("l)t,l whchbe&ongstod:spmmmb,’thatcormpondstomdev

2)v'mnespondstohteral(1):,l and node v,, corresponds to vanablex, (ic.j; = n + §).

Ni=2m+ L1, Ssn+m
There are no other edges.

We will show that the Boolean ensembie that satisfies CNF C exists if and only if graph B contains node
set V' @ V, such that both sets V;' and V)\V,’ dominate V), i.e., the corresponding DMSN problem has a
solution.

Indeed.lethesausﬁedonensemble(al,...,a,),whemelementsa,1,...,a,kareonu,andthcother
¢lements of the ensemble are zeros. In that case, all nodes from ¥V, are dominated by nodes from ¥}’ C ¥, which
correspond to literals that realize respective disjunctions. Since node v, , is linked with all nodes from {4, .., v?},
and nodes V2, ,, ..., 2, ,, are dominated by those nodes from V;\V;' which correspond to other literals, therefore,
V,\\V,’ also dominates V.

let certain set ¥}’ C ¥ be such that ¥’ and ¥\, dominate V. Suppose that one of these
scts (c.g., V\V}") contains node v,,,,. The nodes corresponding to opposite literals can belong to either V|’ or
VI\V)’ (otherwise, nodes v, # + 1 £ j < n + m, that are connccted with just a pair of nodes, would not be
dominated). Therefore, we can construct a Boolean ensemble setting each literal corresponding to a node belonging
to ¥;’ be equal to unity and assigning zero values to the remaining terals. The resulting ensemble realizes CNF
C. Indeed, suppose that this is not so. In that case, thers should be a nonrealized disjunction D. However, the node
corresponding to that disjunction is dominated by a certain node from V], and the literal corresponding to that node
ought to be positive, i.e., it should realize D. We have proved convergence, Its polynomiality and membership of
the problem in the NP class are obvious. ]

Note that in any degenerate case, if

cither V, = @ (U = P),



orV,=V,(S* = F),

ooV =02 (§" = D) (see above),
when the quadripartite graph becomes tripartite, a solution algorithm of polynomial complexity exists for the DPCG
problem.

Wemenuonanaddmaalmuaumwhmapolynommlpmgnmalgonthmmfeasibh.

Suppose that the size of set P is fed, This assumption is well justified is various practical situations, for
example, in the “structure-activity” problem (see, e.g, [1,7]), where we wish to predict membership of a certain
chemical compound (represented by a descriptor set) in the class of active or inactive substances. The length of
compoungs is assumed to be limited, at least when considering a sequence of predictions for a single compound
with a growing set of examples and description clements (i.c., clements of U).

A trivial algorithm which solves the prognosis problem in polynomial time may be an algorithm scanning
consccutively all subsets of P, calculating intersections of all positive examples containing a given subset, and testing
such intersections for embedding in negative examples. When finding an intersection that does not belong to any
negative exampie, the algorithm would proceed to similarity operation on negative examples. The complexity of such
an algorithm is not greater than OR¥({S*] + |S™[) {U]). A more effective algorithm which is quadratic with
respect to the number of bypotheses whose heads are contained in P can be constructed on the basis of the MP
algorithm [14].

§4. CONCLUSIONS

Estimates of the relative complexity of problems concerned with determining the existence of hypotheses
with constraints on size and number of positive cxamples obtained in the present study and in earlier studies [6,7,10]
are presented in the following table.

As before, P stands for existence of a polynomial algorithm, NP denotes NP-compieteness, and ? represents
the openness of the problem. Elements of the table separated by commas represent the state of the problem when
all exampies are of the same sign and if there are examples of both signs, respectively (if the problem is NP-
complete when examples of only one sign exist, then it is NP-complete also for examples with both signs). In such
situations, the notation NP appears in the table:

R
) < - -

144 2, NP VP 2,

n F NP P, N
|2 +n NP §e s,
gial+n NP ? ?

In §2 we demonstrated #P-compieteness of the problem of "number of embedding-minimai hypotheses.”

In §3 we demonstrated Dp-completeness of the problem of prognosis in the general case and polynomial
solubility of this problem for fixed size of object being classified.

The author thanks A. A. Karzanov (who provided the proof of Lemma 3.3) and D. P. Skvortsov (who
pointed out some inaccuracics in the first draft of the paper).
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